【题目】如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4 , 给出如下结论:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1 , 则S4=2S2;④若S1=S2 , 则P点在矩形的对角线上.
其中正确的结论的序号是(把所有正确结论的序号都填在横线上).
【答案】②和④
【解析】解:如右图,过点P分别作PF⊥AD于点F,PE⊥AB于点E,
∵△APD以AD为底边,△PBC以BC为底边,
∴此时两三角形的高的和为AB,即可得出S1+S3= 矩形ABCD面积;
同理可得出S2+S4= 矩形ABCD面积;
∴S2+S4=S1+S3(故②正确);
当点P在矩形的两条对角线的交点时,S1+S2=S3+S4 . 但P是矩形ABCD内的任意一点,所以该等式不一定成立.(故①不一定正确);
③若S3=2S1 , 只能得出△APD与△PBC高度之比,S4不一定等于2S2;(故③错误);
④若S1=S2 , ×PF×AD= PE×AB,
∴△APD与△PBA高度之比为: = ,
∵∠DAE=∠PEA=∠PFA=90°,
∴四边形AEPF是矩形,
∴此时矩形AEPF与矩形ABCD相似,
∴ = ,
∴P点在矩形的对角线上.(故④选项正确)
所以答案是:②和④.
【考点精析】本题主要考查了矩形的性质的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将2017个边长为2的正方形,按照如图所示方式摆放,O1 , O2 , O3 , O4 , O5 , …是正方形对角线的交点,那么阴影部分面积之和等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,边长为 的正方形ABCD的对角线AC,BD相交于点E,顶点B,A在x,y轴正半轴上运动(x轴的正半轴,y轴的正半轴都不包含原点O)顶点C、D都在第一象限.
(1)如图1,当∠ABO=45°时,求直线OE的解析式,并说明OE平分∠AOB;
(2)当∠ABO≠45°时(如图2所示):OE是否还平分∠AOB仍然成立?若是,请证明;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各式变形中,是因式分解的是( )
A.a2﹣2ab+b2﹣1=(a﹣b)2﹣1
B.2x2+2x=2x2(1+ )
C.x4﹣1=(x2+1)(x+1)(x﹣1)
D.(x+2)(x﹣2)=x2﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列各式: , , , , ,…
(1)请猜想出表示上面各式的特点的一般规律,用含x(x表示正整数)的等式表示出来
(2)请利用上述规律计算: .(x为正整数)
(3)请利用上述规律,解方程: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目 (被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:
(1)求本次调查的学生人数;
(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;
(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com