【题目】如图,在△ABC中,AB=AC,∠A=48°,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE,求∠EDF的度数.
科目:初中数学 来源: 题型:
【题目】某网络公司推出了一系列上网包月业务,其中的一项业务是10M“40元包200小时”,且其中每月收取费用y(元)与上网时间x(小时)的函数关系如图所示.
(1)当x≥200时,求y与x之间的函数关系式
(2)若小刚家10月份上网180小时,则他家应付多少元上网费?
(3)若小明家10月份上网费用为52元,则他家该月的上网时间是多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.
(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点 E.
(1)求证:DE=CE.
(2)若∠CDE=35°,求∠A 的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A. B. 4 C. D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知和都是等腰直角三角形,点D是直线BC上的一动点(点D不与B、C重合),连接CE.
(1)在图1中,当点D在边BC上时,求证:;
(2)在图2中,当点D在边BC的延长线上时,结论是否还成立?若不成立,请猜想BC、CE、CD之间存在的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.竞赛后,两支代表队选手的不完整成绩分布如下所示:
(1)通过计算,补全表格;
(2)有人说七年级的合格率、优秀率均高于八年级,所以七年级代表队成绩比八年级代表队好.但也有人说八年级代表队成绩比七年级代表队好.请你给出两条支持八年级代表队成绩较好的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com