【题目】定义:在平面直角坐标系中,抛物线()与直线交于点、(点在点右边),将抛物线沿直线翻折,翻折前后两抛物线的顶点分别为点、,我们将两抛物线之间形成的封闭图形称为惊喜线,四边形称为惊喜四边形,对角线与之比称为惊喜度(Degree of surprise),记作.
(1)如图(1)抛物线沿直线翻折后得到惊喜线.则点坐标 ,点坐标 ,惊喜四边形属于所学过的哪种特殊平行四边形? ,为 .
(2)如果抛物线()沿直线翻折后所得惊喜线的惊喜度为1,求的值.
(3)如果抛物线沿直线翻折后所得的惊喜线在时,其最高点的纵坐标为16,求的值并直接写出惊喜度.
【答案】(1);;菱形;2;(2);(3),或,.
【解析】
(1)当y=0时可求出点A坐标为,B坐标为,AB=4,根据四边形四边相等可知该四边形为菱形,由可知抛物线顶点坐标为(1,-4),所以B,AB=8,即可得到为2;
(2)惊喜度为1即,利用抛物线解析式分别求出各点坐标,从而得到AC和BD的长,计算即可求出m;
(3)先求出顶点坐标,对称轴为直线,讨论对称轴直线是否在这个范围内,分3中情况分别求出最大值为16是m的值.
解:(1)在抛物线上,
当y=0时,,
解得,,,
∵点在点右边,
∴A点的坐标为,B点的坐标为;
∴AB=4,
∵
∴顶点B的坐标为,
由于BD关于x轴对称,
∴D的坐标为,
∴BD=8,
通过抛物线的对称性得到AB=BC,
又由于翻折,得到AB=BC=AD=CD,
∴惊喜四边形为菱形;
;
(2)由题意得:
的顶点坐标,
解得:,∴
∴,
(3)抛物线的顶点为,对称轴为直线:
①即时,,得
∴
②即时,时,对应惊喜线上最高点的函数值
,∴(舍去);
∴
③即时形成不了惊喜线,故不存在
综上所述,,或,
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( )
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.
(1)求证:BE=EC
(2)填空:①若∠B=30°,AC=2,则DB= ;
②当∠B= 度时,以O,D,E,C为顶点的四边形是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是一本中国乃至东方世界最伟大的一本综合性数学著作,标志着中国古代数学形成了完整的体系.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”朱老师根据原文题意,画出了圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径长为( )
A.26寸B.25寸C.13寸D.寸
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与x轴交于点A、B,与y轴分别交于点C,其中点,点,且.
(1)求抛物线的解析式;
(2)点P是线段AB上一动点,过P作交BC于D,当面积最大时,求点P的坐标;
(3)点M是位于线段BC上方的抛物线上一点,当恰好等于中的某个角时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查
B. 甲、乙两人跳远成绩的方差分别为,,说明乙的跳远成绩比甲稳定
C. 一组数据2,2,3,4的众数是2,中位数是2.5
D. 可能性是1%的事件在一次试验中一定不会发生
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnnCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B的坐标是_____,点Bn的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线过点和,点为线段上一个动点(点与点不重合),过点作垂直于轴的直线与直线和抛物线分别交于点.
(1)求此抛物线的解析式;
(2)若点是的中点,则求点的坐标;
(3)若以点为顶点的三角形与相似,请直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com