精英家教网 > 初中数学 > 题目详情
精英家教网若反比例函数y1=
kx
过面积为9的正方形AMON的顶点A,且过点A的直线y2=mx-n的图象与反比例函数的另一交点为B(-1,a)
(1)求出反比例函数与一次函数的解析式;
(2)求△AOB的面积.
分析:(1)由正方形的面积求出正方形的边长即可得到点A的坐标,又因为A在反比例函数图象上,把A的坐标代入到反比例函数解析式中求得k的值,即可得到反比例函数的解析式,又B也在反比例函数图象上,把B的坐标代入反比例解析式即可求出a的值,然后把A和B的坐标都代入到一次函数解析式得到关于m与n的二元一次方程组,求出方程组的解集即可得到m与n的值,进而得到一次函数的解析式;
(2)求出直线AB与x轴的交点C的坐标,即可得到OC的长,OC把三角形AOB分为三角形AOC和三角形BOC,两个三角形的底都为OC的长,三角形AOC的高为A纵坐标的绝对值,三角形BOC的高为B纵坐标的绝对值,根据三角形的面积公式求出即可.
解答:解:(1)由正方形AMON的面积为9,且顶点A在反比例函数图象上可知,A(3,3),
把A(3,3)代入到y1=
k
x
中,解得k=9,
所以反比例函数的解析式为y1=
9
x

把B(-1,a)代入反比例函数解析式得a=
9
-1
=-9,所以B(-1,-9)
把A和B的坐标代入一次函数y2=mx-n得
3m-n=3①
-m-n=-9②
,①-②得4m=12,解得m=3,把m=3代入①得n=6
所以一次函数的解析式为y2=3x-6;

(2)令y2=0得:3x-6=0,解得x=2,所以点C(2,0),所以OC=2,
所以S△AOB=S△AOC+S△BOC=
1
2
×2×3+
1
2
×2×9=12.
精英家教网
点评:此题是一道综合题,要求学生会利用待定系数法求函数的解析式,利用数形结合的数学思想解决实际问题,也是中考中常考的题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

若反比例函数y=-
1x
的图象上有两点A(1,y1),B(2,y2),则y1
 
y2(填“>”或“=”或“<”).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知反比例函数y1=
k
x
和二次函数y2=-x2+bx+c的图象都过点A(-1,2)
(1)求k的值及b、c的数量关系式(用c的代数式表示b);
(2)若两函数的图象除公共点A外,另外还有两个公共点B(m,1)、C(1,n),试在如图所示的直角坐标系中画出这两个函数的图象,并利用图象回答,x为何值时,y1<y2
(3)当c值满足什么条件时,函数y2=-x2+bx+c在x≤-
1
2
的范围内随x的增大而增大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx-
3
2
(a≠0)
的图象经过点(1,0),和(-3,0),反比例函数y1=
k
x
(x>0)的图象经过点(1,2).
(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象;
(2)若反比例函数y1=
k
x
(x>0)的图象与二次函数y=ax2+bx-
3
2
(a≠0)
)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间.请你观察图象写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(k>0,x>0))的图象与二次函数y=ax2+bx-
3
2
(a≠0)
的图象在第一象限内的交点为A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:北京模拟题 题型:解答题

已知二次函数 y=ax2+bx-(a≠0)的图象经过点(1,0),和(-3,0),反比例函数 y1=(x>0)的图象经过点(1,2)。
(1)求这两个二次函数的解析式,并在给定的直角坐标系中作出这两个函数的图象;
(2)若反比例函数 y1=(x>0)的图象与二次函数 y=ax2+bx-(a≠0))的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象写出这两个相邻的正整数;
(3)若反比例函数 y2=(k>0,x>0))的图象与二次函数 y=ax2+bx-(a≠0)的图象在第一象限内的交点为A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围。

查看答案和解析>>

同步练习册答案