2£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãA´ÓÔ­µãO³ö·¢£¬Ã¿´ÎÏòÉÏÒƶ¯2¸öµ¥Î»³¤¶È»òÏòÓÒÒƶ¯1¸öµ¥Î»³¤¶È£®
£¨1£©ÊµÑé²Ù×÷£º
ÔÚƽÃæÖ±½Ç×ø±êϵÖÐÃè³öµãA´ÓµãO³ö·¢£¬Òƶ¯1´Îºó£¬2´Îºó£¬3´Îºó¿ÉÄܵ½´ïµÄµã£¬²¢°ÑÏàÓ¦µãµÄ×ø±êÌîдÔÚ±í¸ñÖУº
A´ÓµãO³ö·¢Òƶ¯´ÎÊý¿ÉÄܵ½´ïµÄµãµÄ×ø±ê
1´Î£¨0£¬2£©£¬£¨1£¬0£©
2´Î£¨0£¬4£©£¬£¨1£¬2£©£¬£¨2£¬0£©
3´Î£¨0£¬6£©£¬£¨1£¬4£©£¬£¨2£¬2£©£¬£¨3£¬0£©
£¨2£©¹Û²ì·¢ÏÖ£º
ÈÎÒ»´ÎÒƶ¯£¬µãA¿ÉÄܵ½´ïµÄµãÔÚÎÒÃÇѧ¹ýµÄÒ»ÖÖº¯ÊýµÄͼÏóÉÏ£¬
¢ÙÇóÒƶ¯1´ÎºóµãA¿ÉÄܵ½´ïµÄµãËùÔÚͼÏóµÄº¯Êý±í´ïʽ£»
¢ÚÒƶ¯2´ÎºóÔÚº¯Êýy=-2x+4µÄͼÏóÉÏ£¬¡­ÓÉ´ËÎÒÃÇÖªµÀ£¬Òƶ¯n´ÎºóÔÚº¯Êýy=-2x+2nµÄͼÏóÉÏ£®£¨ÇëÌîдÏàÓ¦µÄº¯Êý±í´ïʽ£©
£¨3£©Ì½Ë÷ÔËÓãº
µãA´ÓµãO³ö·¢¾­¹ýn´ÎÒƶ¯ºó£¬µ½´ïÖ±Ïßy=xÉϵĵãB£¬ÇÒƽÒƵÄ×Ü·¾¶³¤Îª20£¬ÇóµãBµÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝµãµÄƽÒÆÌصãÃè³öÿ´ÎƽÒƺóPµãµÄλÖü´¿É£»
£¨2£©¢ÙÏȸù¾ÝPµãƽÒÆÒ»´ÎºóµÄµãµÄ×ø±êÇó³ö¹ý´ËµãµÄº¯Êý½âÎöʽ£»¢ÚÔÙ¸ù¾Ýº¯ÊýͼÏóƽÒƵÄÐÔÖʽâ´ð¼´¿É£»
£¨3£©ÉèµãBµÄ×ø±êΪ£¨x£¬y£©£¬Çó³öBµãµÄ×ø±ê£¬µÃ³önµÄ·½³Ì£¬ÔÙ¸ù¾ÝµãBµÄ×ø±êΪÕýÕûÊý¼´¿É½øÐнâ´ð£®

½â´ð ½â£º£¨1£©ÈçͼËùʾ£º

P´ÓµãO³ö·¢Æ½ÒÆ´ÎÊý¿ÉÄܵ½´ïµÄµã
µÄ×ø±ê
1´Î£¨0£¬2£©£¬£¨1£¬0£©
2´Î£¨0£¬4£©£¬£¨1£¬2£©£¬£¨2£¬0£©
3´Î£¨0£¬6£©£¬£¨1£¬4£©£¬£¨2£¬2£©£¬£¨3£¬0£©
£¨2£©¢ÙÉè¹ý£¨0£¬2£©£¬£¨1£¬0£©µãµÄº¯Êý½âÎöʽΪ£ºy=kx+b£¨k¡Ù0£©£¬
Ôò$\left\{\begin{array}{l}{b=2}\\{k+b=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=2}\\{k=-2}\end{array}\right.$£¬
¹ÊµÚÒ»´ÎƽÒƺóµÄº¯Êý½âÎöʽΪ£ºy=-2x+2£»
¢ÚÒƶ¯2´ÎºóÔÚº¯Êýy=-2x+4µÄͼÏóÉÏ£¬¡­ÓÉ´ËÎÒÃÇÖªµÀ£¬Òƶ¯n´ÎºóÔÚº¯Êýy=-2x+2nµÄͼÏóÉÏ
£¨3£©ÉèµãBµÄ×ø±êΪ£¨x£¬y£©£¬ÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{y=-2x+2n}\\{y=x}\end{array}\right.$£¬
½âÕâ¸ö·½³Ì×飬µÃµ½µãBµÄ×ø±êΪ£¨$\frac{2}{3}$n£¬$\frac{2}{3}$n£©£®
¡ßƽÒƵÄ·¾¶³¤Îªx+y£¬
¡à$\frac{2}{3}$n+$\frac{2}{3}$n=20£¬
¡àn=15£®
¡àµãBµÄ×ø±êΪ£¨10£¬10£©£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÒ»´Îº¯ÊýµÄͼÏóÓ뼸ºÎ±ä»»£¬ÊìÖªº¯ÊýͼÏóƽÒƵķ¨ÔòÊǽâ´ð´ËÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®¼ÆË㣺£¨$\frac{1}{2}$-1£©£¨$\frac{1}{3}$-1£©£¨$\frac{1}{4}$-1£©¡­£¨$\frac{1}{99}$-1£©£¨$\frac{1}{100}$-1£©=-$\frac{1}{100}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Ò»Ôª¶þ´Î·½³Ìx2+2$\sqrt{2}$x-6=0µÄ¸ùÊÇx1=$\sqrt{2}$£¬x2=-3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÈçͼËùʾ£¬AB=AC=AD£¬Çë˵Ã÷£º
£¨1£©ÈôAD¡ÎBC£¬ÔòBDÊÇ¡ÏABCµÄƽ·ÖÏßÇÒ¡ÏC=2¡ÏD£»
£¨2£©ÈôBDƽ·Ö¡ÏABC£¬ÔòAD¡ÎBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª$\frac{xy}{x+y}$=1£¬$\frac{yz}{y+z}$=2£¬$\frac{zx}{z+x}$=3£¬Ôòx+y+z=-$\frac{276}{35}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¡ÏABO=2¡ÏBAO£¬PΪxÖáÕý°ëÖáÒ»¶¯µã£¬BCƽ·Ö¡ÏABP£¬PCƽ·Ö¡ÏAPF£¬ODƽ·Ö¡ÏPOE
£¨1£©Çó¡ÏBAOµÄ¶ÈÊý£»
£¨2£©ÇóÖµ£º¡ÏC=15¡ã+$\frac{1}{2}$¡ÏOAP£»
£¨3£©PÔÚÔ˶¯ÖУ¬¡ÏC+¡ÏDµÄÖµÊÇ·ñ±ä»¯£¿Èô·¢Éú±ä»¯£¬ËµÃ÷ÀíÓÉ£»Èô²»±ä£¬ÇóÆäÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÈçͼËùʾ£¬ÊÇij¹«Ë¾Ò»µçÈÈÁÜÔ¡Æ÷Ë®ÏäµÄË®Á¿y£¨Éý£©Ó빩ˮʱ¼äx£¨·Ö£©µÄº¯Êý¹Øϵ£®
£¨1£©ÇóyÓëxµÄº¯Êý¹Øϵʽ£»
£¨2£©Çó£ºÔÚ30minʱˮÏäÀïÓжàÉÙÉýË®£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®1883Ä꣬¿µÍжû¹¹ÔìµÄÕâ¸ö·ÖÐΣ¬³Æ×÷¿µÍжû¼¯£¬´ÓÊýÖáÉϵ¥Î»³¤¶ÈÏ߶οªÊ¼£¬¿µÍжûÈ¡×ßÆäÖмäÈý·ÖÖ®Ò»¶ø´ïµ½µÚÒ»½×¶Î£¬È»ºó´Óÿһ¸öÓàϵÄÈý·ÖÖ®Ò»Ï߶ÎÖÐÈ¡×ßÆäÖмäÈý·ÖÖ®Ò»¶ø´ïµ½µÚ¶þ½×¶Î£¬ÎÞÏÞµØÖظ´ÕâÒ»¹ý³Ì£¬ÓàϵÄÎÞÇîµã¼¯¾Í³Æ×ö¿µÍжû¼¯£¬ÉÏͼÊÇ¿µÍжû¼¯µÄ×î³õ¼¸¸ö½×¶Î£¬µ±´ïµ½µÚn¸ö½×¶Îʱ£¬ÓàϵÄËùÓÐÏ߶εij¤¶ÈÖ®ºÍΪ£¨¡¡¡¡£©
A£®$\frac{2n}{3}$B£®$\frac{2n}{3}$C£®${£¨\frac{2}{3}£©^n}$D£®${£¨\frac{2}{3}£©^{n-1}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈôaÊÇ$\sqrt{2}$+1µÄÕûÊý²¿·Ö£¬ÊÔÇó$\sqrt{{a}^{2}+\frac{1}{{a}^{2}}-2}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸