精英家教网 > 初中数学 > 题目详情
14.如图1,在正方形ABCD中,E、F分别为DC、BC边上的点,且满足∠EAF=45°,连结EF,试说明DE+BF=EF.
解:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得AB=ADMBGD,∠1=∠2,∠ABG=∠D=90°.
∴∠ABG+∠ABF=90°+90°=180°.
∴点G、B、F在同一条直线上.
∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°
∵∠1=∠2,∴∠1+∠3=45°.
∴∠GAF=∠EAF.
又∵AG=AE,AF=AF.
∴△GAF≌△EAF.
∵GF=EF.
∴DE+BF=BG+BF=GF=EF.
(2)类比引申:
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠ADC=180°时,有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,试猜想BD、DE、EC满足的等量关系,并写出推理过程.

分析 (1)把△AEE绕点A顺时针旋转90°至△ABG,可使AB与AD重合,证出△AFG≌△AFE,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AFE≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF的位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.

解答 解:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合.由旋转可得AB=ADMBGD,∠1=∠2,∠ABG=∠D=90°.
∴∠ABG+∠ABF=90°+90°=180°.
∴点G、B、F在同一条直线上.
∵∠EAF=45°,
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45,
∵∠1=∠2,
∴∠1+∠3=45°.
∴∠GAF=∠EAF.
又∵AG=AE,AF=AF.
∴△GAF≌△EAF.
∵GF=EF.
∴DE+BF=BG+BF=GF=EF,
故答案为EAF,△EAF,GF
(2)∠B+∠D=180°时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,如图2,

∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,点F、D、G共线,
在△AFE和△AFG中,
$\left\{\begin{array}{l}{AE=AG}\\{∠FAE=∠FAG}\\{AF=AF}\end{array}\right.$
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180°;

(3)BD2+CE2=DE2
理由是:把△ACE旋转到ABF的位置,连接DF,
则∠FAB=∠CAE.

∵∠BAC=90°,∠DAE=45°,
∴∠BAD+∠CAE=45°,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45°,
则在△ADF和△ADE中,
$\left\{\begin{array}{l}{AD=AD}\\{∠FAD=∠DAE}\\{AF=AE}\end{array}\right.$
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45°,
∴∠BDF=90°,
∴△BDF是直角三角形,
∴BD2+BF2=DF2
∴BD2+CE2=DE2

点评 本题考查了全等三角形的性质和判定,正方形的性质的应用,解此题的关键是能正确作出辅助线得出全等三角形,综合性比较强,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.方程组$\left\{\begin{array}{l}{ax+by=0}\\{bx+ay=5}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,则a+b的值为(  )
A.1B.-1C.$\frac{5}{3}$D.-3

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在Rt△ABC中,∠ABC=90°,AB=BC=$2\sqrt{2}$,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BE,则BE的长是2$\sqrt{3}$+2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知AE=CF,∠AFD=∠CEB,那么添加一个条件后,仍无法判定△ADF≌△CBE的是(  )
A.AD=CBB.∠A=∠CC.BE=DFD.AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,在方格纸中每个小方格都是边长为1的正方形,A、B两点在小方格的顶点上,点C也在小方格的顶点上,且以A、B、C为顶点的三角形的面积为1个平方单位,则点C的个数为(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β
(1)如图1,若α+β=150°,求∠MBC+∠NDC的度数;
(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α、β所满足的等量关系式;
(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列各数中,无理数的是(  )
A.0B.$\sqrt{4}$C.$\sqrt{5}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.一只布袋内装有3个红球,6个黑球,1个白球(这些球除颜色外,其余没有区别),从中任意取出一球,则取得的球不是红球的概率是(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式去括号错误的是(  )
A.(a-b)-(x-y)=a-b-x+yB.m+(-n+a-b)=m-n+a-b
C.-2(2x-3y+4)=-4x+6y+4D.x-(3y-1)=x-3y+1

查看答案和解析>>

同步练习册答案