分析 (1)先移项得到(2x+1)2-(x-3)2=0,然后利用因式分解法解方程;
(2)先移项得到y2-2$\sqrt{5}$y+5=0,然后利用配方法解方程.
解答 解:(1)(2x+1)2-(x-3)2=0,
(2x+1+x-3)(2x+1-x+3)=0,
2x+1+x-3=0或2x+1-x+3=0,
所以x1=$\frac{2}{3}$,x2=-4;
(2)y2-2$\sqrt{5}$y+5=0,
(y-$\sqrt{5}$)2=0,
所以y1=y2=$\sqrt{5}$.
点评 本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | m>-1 | B. | m=-1 | C. | m>1 | D. | m<-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com