精英家教网 > 初中数学 > 题目详情

正方形网格中,如图放置,则tan的值是(   )

A.             B.            C.               D.2

 

【答案】

D

【解析】

试题分析:求锐角三角函数值.最直接的方法是创设直角三角形,由图可发现,的一边OA与正方形相交于一点,故可作直角三角形,故tan=,故选D.

考点:锐角三角函数的求解

点评:对于此种试题,学生应该把正方形网格与角组合起来看,找出直角三角形

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,在12×12的正方形网格中,△TAB的顶点分别为T(1,1),A(2,3),B(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1的位似中心的同侧将TAB放大为△TA′B′,放大后点A,B的对应点分别为A′,B′,画出△TA′B′,并写出点A′,B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2)
(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)=3:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在12×12的正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).以点T(1,1)为位似中心,按比例尺TA′:TA=3:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′,画出△TA′B′,写出点A′、B′坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】在正方形网格中,如图(一),△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA′B′,放大后点A、B的对应点分别为A′、B′.画出△OA′B′,并写出点A'、B'的坐标:A′(
3
3
6
6
),B′(
6
6
-3
-3
);
(2)在(1)中,若点C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标(
3a
3a
3b
3b
);
【拓展】在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P'在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
【探索】如图(二),完成下列问题:
(3)填空:如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
2
2
60°
60°
);
(4)如图2,△ABC是边长为3cm的等边三角形,将它作旋转相似变换A(
43
,90°)
,得到△ADE,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

【问题】在正方形网格中,如图(一),△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA′B′,放大后点A、B的对应点分别为A′、B′.画出△OA′B′,并写出点A'、B'的坐标:A′(______,______),B′(______,______);
(2)在(1)中,若点C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标(______,______);
【拓展】在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P'在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
【探索】如图(二),完成下列问题:
(3)填空:如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(______,______);
(4)如图2,△ABC是边长为3cm的等边三角形,将它作旋转相似变换数学公式,得到△ADE,求线段BD的长.

查看答案和解析>>

同步练习册答案