精英家教网 > 初中数学 > 题目详情
5、我们将1×2×3×…×n记作n!,如:5!=1×2×3×4×5;100!=1×2×3×…×100;若设S=1×1!+2×2!+3×3!+…+2007×2007!,则S除以2008的余数是(  )
分析:根据S的特点,再加上一列K=1!+2!+3!+…+2007!后不含系数的n!的形式的和的形式整理就可以得到意想不到的效果.
解答:解:设K=1!+2!+3!+…+2007!,
则S+K=1×1!+2×2!+3×3!+…+2007×2007!+1!+2!+3!+…+2007!
=(1+1)1!+(2+1)2!+(3+1)3!+…+(2007+1)2007!
=2×1!+3×2!+4×3!+…+2007×2006!+2008×2007!
=2!+3!+…+2007!+2008×2007!
=-1+1!+2!+3!+…+2007!+2008×2007!
=-1+K+2008×2007!,
∴S=2008×2007!-1,
=2008!-1,
∴S除以2008的余数是1除以2008商为0余2007,
∴S除以2008的余数是2007.
故选D.
点评:本题是信息给予题,提供一列K=1!+2!+3!+…+2007!,再通过整理去掉这列数是解本题的关键,也是难点.这就要求同学们在平时的学习中积累经验,提高自身能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,我们将相同的两块含30°角的直角三角板Rt△DEF与Rt△ABC叠合,使DE在AB上,DE过点C,已知AC=DE=6.
(1)将图1中的△DEF绕点D逆时针旋转(DF与AB不重合),使边DF、DE分别交AC、BC于点P、Q,如图2.
①求证:△CQD∽△APD;
②连接PQ,设AP=x,求面积S△PCQ关于x的函数关系式;
(2)将图1中的△DEF向左平移(点A、D不重合),使边FD、FE分别交AC、BC于点M、N设AM=t,如图3.
①判断△BEN是什么三角形?并用含t的代数式表示边BE和BN;
②连接MN,求面积S△MCN关于t的函数关系式;
(3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得S△PCQ等于平移所得S△MCN的最大值?说明你的理由.
精英家教网精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”.
解决下列问题:
(1)菱形的“二分线”可以是
菱形的一条对角线所在的直线

(2)三角形的“二分线”可以是
三角形一边中线所在的直线.

(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”,并说明你的画法.

查看答案和解析>>

科目:初中数学 来源: 题型:

28、我们将平分三角形的面积,又平分三角形的周长的直线称为三角形的“平分线”.在△ABC中,AB=BC=10,AC=12.
(1)乐乐用直尺和圆规作出△ABC的一条“平分线”,请你帮乐乐在图1中作出这条“平分线”(保留作图痕迹,不写作法);
(2)丁丁在图2中作出△ABC的另一条“平分线”CD:过点C画直线CD交AB于点D.你觉得丁丁的方法正确吗?若正确,说明确定的方法;若不正确,请说明理由;
(3)请你找出△ABC的所有“平分线”,并说明确定的方法.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•昆山市二模)读一读,式子“1+2+3+4+…+100”表示从1开始的100个自然数的和,由于式子比较长,书写不方便,为了简便,我们将其表示为
100
n-1
n
,这里“
 
 
”是求和符号,通过对上述材料的阅读,计算
2001
n-1
1
n(n+1)
=
2001
2002
2001
2002

查看答案和解析>>

科目:初中数学 来源: 题型:

我们将在直角坐标系中横坐标为正整数,纵坐标为完全平方数的点染成红点,则函数通过的红点是
(m,n2)(m为正整数,n为整数)
(m,n2)(m为正整数,n为整数)

查看答案和解析>>

同步练习册答案