精英家教网 > 初中数学 > 题目详情
若等腰三角形的一个外角为120°,一边长为2cm,则它的周长为
6
6
cm.
分析:由等腰三角形的一个外角为120°,易证得此等腰三角形是等边三角形,又由一边长为2cm,即可求得答案.
解答:解:∵等腰三角形的一个外角为120°,
∴它的一个内角为60°,
∴此等腰三角形是等边三角形,
∵一边长为2cm,
∴它的周长为6cm.
故答案为:6.
点评:此题考查了等腰三角形的性质与等边三角形的判定与性质.此题难度不大,注意定理的应用是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

用剪刀将形状如图(甲)所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图(乙)中的Rt△BCE就是拼成的一个图形.
(1)用这两部分纸片除了可以拼成图乙中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图丙、图丁的虚框内;
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2-(m-1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2-(m-1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1:△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.将△AOD绕点O顺时针旋转90°得△OBE,从而构造出以AD、BC、
OC+OD的长度为三边长的△BCE(如图2).若△BOC的面积为1,则△BCE面积等于
2
2


如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
①在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留作图痕迹);
②若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•金华模拟)探究:如图(1),在?ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连接AC,EF.在图中找一个与△FAE全等的三角形,并加以证明.
应用:以?ABCD的四条边为边,在其形外分别作正方形,如图(2),连接EF,GH,IJ,KL.若?ABCD的面积为6,则图中阴影部分四个三角形的面积和为
12
12

推广:以?ABCD的四条边为矩形长边,在其形外分别作长与宽之比为
3
矩形,如图(3),连接EF,GH,IJ,KL.若图中阴影部分四个三角形的面积和为12
3
,求?ABCD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB、BC、AC三边的长分别为
5
10
13
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:
3.5
3.5

(2)若△DEF三边的长分别为
5
8
17
,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为
3
3

(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是
110
110
m2

查看答案和解析>>

同步练习册答案