精英家教网 > 初中数学 > 题目详情
在图的方格纸中:
(1)找出互相平行的线段,并用符号表示出来;
(2)用三角尺试着画出与CD平行的线段,并用符号表示出来.
分析:(1)分别找出各线段与水平方向的夹角在网格上所截得的竖直方向的线段与水平方向的线段的长度,然后求出它们的比值,比值相同的线段就是互相平行的线段;
(2)利用CD倾斜程度,结合网格画出JK∥CD即可.
解答:解:(1)AB,竖直方向的长度为3个单位,水平方向的长度为1个单位,比值为:3:1;
CD,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;
EF,竖直方向的长度为3个单位,水平方向的长度为2个单位,比值为:3:2;
GH,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;
MN,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;
PN,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;
结合图形线段的倾斜方向相同,比值相同的线段是CD与MN,GH与PN,
所以互相平行的线段是CD∥MN,GH∥PN;

(2)如图:JK为所求作的线段.
点评:本题考查了平行线与网格相结合,准确识图,找出线段在网格上的水平方向上的长度与竖直方向上的长度并求出比值是解题的关键,是基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?

查看答案和解析>>

科目:初中数学 来源: 题型:

16、在图的方格纸中,每个小正文形的边长都是1,若一个三角形的每个顶点都在小正方形的顶点上,则称这个三角形为格点三角形,请你在方格纸中任意画出两个全等的格点钝角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、在图的方格纸中,△ABC的顶点坐标分别为A(-4,2)、B(-1,3),△ABC中任意一点P的坐标为(a,b).
(1)△A1B1C1是由△ABC经过某种变换后得到的图形,观察它们对应点的坐标之间的关系,指出是怎样变换得到的?并写出点P对应点P1的坐标(用含a、b的代数式表示);
(2)作出△ABC关于x轴对称的△A2B2C2,并写出点P对应点P2的坐标(用含a、b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

在图的方格纸中,△OAB的顶点坐标分别为O(0,0)、A(-2,-1)、B(-1,-3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.
(1)在图中标出位似中心P的位置,并写出点P及点B的对应点B1的坐标;
(2)以原点O为位似中心,在位似中心的同侧画出△OAB的一个位似△OA2B2,使它与△OAB的相似比为2:1.并写出点B的对应点B2的坐标;
(3)△OAB 内部一点M的坐标为(a,b),写出M在△OA2B2中的对应点M2的坐标;
(4)判断△OA2B2能否看作是由△O1A1B1经过某种变换后得到的图形,若是,请指出是怎样变换得到的(直接写答案).

查看答案和解析>>

同步练习册答案