精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O是梯形ABCD的内切圆,ABDC,E、M、F、N分别是边AB、BC、CD、DA上的切点.

(1)求证:AB+CD=AD+BC

(2)求∠AOD的度数.

【答案】(1)证明见解析;(2)90°.

【解析】

(1)根据切线长定理可证得AE=AN,BE=BM,DF=DN,CF=CM,进而证明AB+DC=AD+BC;

(2)连OE、ON、OM、OF,通过证明OAE≌△OAN,得到∠OAE=OAN.同理:∠ODN=ODE,再利用平行线的性质:同旁内角互补即可求出∠AOD的度数.

1)证明:∵⊙O切梯形ABCDEMFN,由切线长定理:AE=ANBE=BMDF=DNCF=CM

AE+BE+DF+CF=AN+BM+DN+CM

AB+DC=AD+BC

2)OEONOMOF

OE=ONAE=ANOA=OA

∴△OAE≌△OAN

∴∠OAE=OAN

同理,∠ODN=ODF

∴∠OAN+ODN=OAE+ODE

又∵ABDC,∠EAN+CDN=180°

∴∠OAN+ODN=×180°=90°

∴∠AOD=180°90°=90°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点P在斜边AB上 (不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF.随着P点在边AB上位置的改变,EF的长度是否也会改变?若不变,请你求EF的长度;若有变化,请你求EF的变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:

①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是( )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+2与坐标轴相交于A,B两点,与反比例函数y=在第一象限交点C(1,a).求:

(1)反比例函数的解析式;

(2)AOC的面积;

(3)不等式x+2﹣<0的解集(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明与小亮玩游戏,如图,两组相同的卡片,每组三张,第一组卡片正面分别标有数字1,3,5;第二组卡片正面分别标有数字2,4,6.他们将卡片背面朝上,分组充分洗匀后,从每组卡片中各摸出一张,称为一次游戏.当摸出的两张卡片的正面数字之积小于10,则小明获胜;当摸出的两张卡片的正面数字之积超过10,则小亮获胜.你认为这个游戏规则对双方公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:

(1)求的值;

(2)这个几何体最少有几个小立方体搭成,最多有几个小立方体搭成;

(3)当时画出这个几何体的左视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程的两个根,且OA>OB.

(1)若点Ex轴上的点,且△AOE的面积为.

求:①点E的坐标;②证明:△AOE∽△DAO;

(2)若点M在平面直角坐标系中,则在直线AB上是否存在点F,使以A,C,F,M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,ABC内接于O,AB=AC,BD为O的弦,且ABCD,过点A作O的切线AE与DC的延长线交于点E,AD与BC交于点F.

(1)求证:四边形ABCE是平行四边形;

(2)若AE=6,CD=5,求OF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BC是⊙O的直径,点AD在⊙O上,∠B=2CAD,在BC的延长线上有一点P,使得∠PACB,弦AD交直径BC于点E

(1)求证:DP与⊙O相切;

(2)判断DCE的形状,并证明你的结论;

(3)若CE=2,DE,求线段BC的长度.

查看答案和解析>>

同步练习册答案