精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程x2-(m+2)x+m-2=0.
(1)求证:无论m取何值时,方程总有两个不相等的实数根.
(2)若方程的两实数根之积等于m2+9m-11,求
m+6
的值.
分析:(1)根据△>0恒成立即可证明.
(2)设方程两根为x1,x2,由韦达定理即可解题.
解答:解:(1)由题意得:△=[-(m+2)]2-4(m-2)=m2+12,
∵无论m取何值时,m2≥0,∴m2+12≥12>0
即△>0恒成立,
∴无论m取何值时,方程总有两个不相等的实数根.
(2)设方程两根为x1,x2,由韦达定理得:x1•x2=m-2,
由题意得:m-2=m2+9m-11,解得:m1=-9,m2=1,
m+6
=
7
点评:本题考查了根与系数的关系及根的判别式,难度适中,关键熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案