【题目】如图,是的边的垂直平分线,垂足为点,与的延长线交于点.连接,,,与交于点,则下列结论:①四边形是菱形;②;③;④四边形;其中正确的结论有_____.(填写所有正确结论的序号)
【答案】①②③④
【解析】
根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;
解:∵四边形ABCD是平行四边形,
∴AB//CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB= AB= DC,CD⊥CE,
∵OA//DC,
∴,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵四边形ABCD是平行四边形,
∴∠ACD=∠BAC,
∵四边形ACBE是菱形,
∴∠BAC=∠ABE,故②正确,
∵OA//CD,
∴,
∴故③正确,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴四边形.故④正确,
故答案为①②③④.
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,将此等腰三角形纸片沿底边BC上的高AD剪成两个全等的三角形,用这两个三角形拼成一个平行四边形,则所拼出的所有平行四边形中最长的对角线的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.
(1)求a,k的值及点B的坐标;
(2)若点P在x轴上,且S△ACP=S△BOC,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点,连接.
(1)求的值;
(2)求证:四边形是菱形;
(3)如图2,,分别是线段,上的动点(与端点不重合),且,设,,请解决以下相关问题:
①写出关于的函数解析式;
②是否存在这样的点,使是等腰三角形?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校数学课外实践小组一次活动中,测量一座楼房的高度.如图,在山坡坡脚A处测得这座楼房的楼顶B点的仰角为60°,沿山坡往上走到C处再测得B点的仰角为45°,已知山坡的坡比i=1:,OA=200m,且O、A、D在同一条直线上.
(1)求楼房OB的高度;
(2)求山坡上AC的距离(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为更新果树品种,某果园计划新购进、两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中种苗的单价为元/棵,购买种苗所需费用(元)与购买数量(棵)之间存在如图所示的函数关系.
(1)求与的函数关系式;
(2)若在购买计划中,种苗的数量不超过35棵,但不少于种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;
(1)求A,B两种口罩的单价各是多少元?
(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com