精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC中,AB=AC=10cmBC=8cm,点DAB的中点.

(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,BPDCQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPDCQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?

【答案】1)利用SAS公式求证(2

【解析】

解:(1①∵秒,

厘米,

厘米,点的中点,

厘米.

厘米,

厘米,

②∵

,则

,点运动的时间秒,

厘米/秒.

2)设经过秒后点与点第一次相遇,

由题意,得

解得秒.

共运动了厘米.

、点边上相遇,

经过秒点与点第一次在边上相遇.

1根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.

根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;

2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走三角形的两个边AB,AC的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:

(1)小明总共剪开了_______条棱.

(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.

(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示,B、C、D三点在同一条直线上,AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是(  )

A. A与D互为余角 B. ∠A=∠2 C. △ABC≌△ CED D. ∠1=∠2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AB的垂直平分线DEBC的延长线于点F,若∠F=30°DE=1,试求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在55的方格(每一格边长为1)上沿着网格线运动,A处出发去看望B、C、D处的甲虫,规定:向上向右为正,向下向左为负.例如:从AB记为:(+1,+3);从CD 记为:(+1,-2),其中第一个数表示左右方向,第二个数表示上下方向.

(1)填空:记为 ), 记为 );

(2)若甲虫的行走路线为:,请你计算甲虫走过的路程.

(3)若这只甲虫去Q的行走路线依次为:A→M(+2,+2),M→N(+2,-1),N→P(-2,+3),P→Q(-1,-2),请依次在图2标出点M、N、P、Q的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y是x的二次函数,当x=2时,y=﹣4,当y=4时,x恰为方程2x2﹣x﹣8=0的根.
(1)解方程 2x2﹣x﹣8=0
(2)求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(x+1)2﹣x(1﹣x)﹣2x2
(2) ÷( ﹣a﹣b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°,ABC=2C,BE平分∠ABCACE,ADBED,下列结论:①AC﹣BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=C;BC=4AD,其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案