【题目】△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为( )
A. B. C. D.
科目:初中数学 来源: 题型:
【题目】已知:如图,在Rt△ABC中,∠C=90°,Rt△ABC的内切圆⊙O,切点分别为点D、E、F,
(1)若AC=3,BC=4,求△ABC的内切圆半径;
(2)当AD=5,BD=7时,求△ABC的面积;
(3)当AD=m,BD=n时,直接写出求△ABC的面积(用含m,n的式子表示)为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》中有这样一个问题:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?其大意如下:今有5只雀、6只燕,分别放一起用衡器称,聚在一起的雀重,燕轻.将1只雀、1只燕交换位置放,两边重量相等.5只雀、6只燕重量为1斤(注:声代1斤=16两).问每只雀、燕各重多少两?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②当x>﹣1时,y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2; ⑤3a+c<0.其中正确结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.
(1)证明:ΔABE≌ΔCAD.
(2)若CE=CP,求证∠CPD=∠PBD.
(3)在(2)的条件下,证明:点D是BC的黄金分割点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.
(1)若AC=4,BC=2,求OE的长.
(2)试判断∠A与∠CDE的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax+bx-4(a,b是常数.且a0)的图象过点(3,-1).
(1)试判断点(2,2-2a)是否也在该函数的图象上,并说明理由.
(2)若该二次函数的图象与x轴只有一个交点,求该函数表达式.
(3)已知二次函数的图像过(,)和(,)两点,且当<时,始终都有>,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点为内的一个动点,过点作与,使得,分别交、于点、.
(1)求证:;
(2)连接,若,试求的值;
(3)记,,,若,,且、、为整数,求、、的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com