精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax+2)(x-4)(a为常数,且a0)与x轴从左至右依次交于AB两点,与y轴交于点C,经过点B的直线y=-x+b与抛物线的另一交点为D,且点D的横坐标为-5

1)求抛物线的函数表达式;

2P为直线BD下方的抛物线上的一点,连接PDPB,求△PBD面积的最大值;

3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

【答案】1;(2;(3)(-22

【解析】

1)首先求出点AB坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得a的值;

2)用三角形的面积公式建立函数关系式,再确定出最大值;

3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如图,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.

1)抛物线y=ax+2)(x-4),令y=0,解得x=-2x=4

A-20),B40).

∵直线y=-x+b经过点B40),

-×4+b=0,解得b=

∴直线BD解析式为:y=-x+

x=-5时,y=3

D-53),

∵点D-53)在抛物线y=ax+2)(x-4)上,

a-5+2)(-5-4=3

a=

∴抛物线的函数表达式为:y=x2-x-

2)设Pmm2-m-

SBPD=×9[(-m+-m2-m-]

=-m2-m+10

=-m+2+

∴△BPD面积的最大值为

3)如图,

DKABAHDKAH交直线BD于点F

∵由(2)得,DN=3BN=9

∵∠DBA=30°,

∴∠BDH=30°,

∴FG=DF×sin30°=FD

∴当且仅当AHDK时,AF+FH最小,

M在整个运动中用时为:t=AF+FD=AF+FH

lBDy=-x+

Fx=Ax=-2F-22

∴当F坐标为(-22)时,用时最少.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数的图象与一次函数的图象分别交于MN两点,已知点M(-2,m).

(1)求反比例函数的表达式;

(2)Py轴上的一点,当∠MPN为直角时,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=ACAHBC,点EAH上一点,延长AH至点F,使FH=EH.

(1)求证:四边形EBFC是菱形;

(2)如果∠BAC=ECF,求证:ACCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在ABAC上,设EG=x mmEF=y mm

1)写出xy的关系式;

2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC, ,直线l从与AC重合的位置开始以每秒个单位的速度沿CB方向平行移动,且分别与CBAB边交于DE两点,动点FA开始沿折线ACCBBA运动,点FACCBBA边上运动的速度分别为每秒3,4,5个单位,点F与直线l同时出发,设运动的时间为t秒,当点F第一次回到点A时,点F与直线 l同时停止运动.运动过程中,作点F关于直线DE的对称点,记为点,若形成的四边形 为菱形,则所有满足条件的之和为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y=- x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,EAC边上的一点,且AE=AB∠BAC=2∠CBE,以AB为直径作⊙OAC于点D,交BE于点F

1)求证:BC⊙O的切线;

2)若AB=8BC=6,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:

①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100

(1)求m关于x的一次函数表达式;

(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】

(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(数学概念)

若等边三角形的三个顶点DEF分别在ABC的三条边上我们称等边三角形DEFABC的内接正三角形

(概念辨析)

(1)下列图中DEF均为等边三角形则满足DEFABC的内接正三角形的是

A.    B.

C.

(操作验证)

(2)如图.在ABC,∠B=60°,D为边AB上一定点BCBD),DEDBEM平分DEC交边AC于点MDME的外接圆与边BC的另一个交点为N

求证DMNABC的内接正三角形

(知识应用)

(3)如图.在ABC,∠B=60°,∠A=45°,BC=2,D是边AB上的动点若边BC上存在一点E使得以DE为边的等边三角形DEFABC的内接正三角形.设DEF的外接圆O与边BC的另一个交点为KDK的最大值为 最小值为

查看答案和解析>>

同步练习册答案