【题目】如图,已知抛物线y=a(x+2)(x-4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-x+b与抛物线的另一交点为D,且点D的横坐标为-5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值;
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
【答案】(1);(2);(3)(-2,2)
【解析】
(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得a的值;
(2)用三角形的面积公式建立函数关系式,再确定出最大值;
(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF.如图,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点.
(1)抛物线y=a(x+2)(x-4),令y=0,解得x=-2或x=4,
∴A(-2,0),B(4,0).
∵直线y=-x+b经过点B(4,0),
∴-×4+b=0,解得b=,
∴直线BD解析式为:y=-x+,
当x=-5时,y=3,
∴D(-5,3),
∵点D(-5,3)在抛物线y=a(x+2)(x-4)上,
∴a(-5+2)(-5-4)=3,
∴a=.
∴抛物线的函数表达式为:y=x2-x-
(2)设P(m,m2-m-)
∴S△BPD=×9[(-m+)-(m2-m-)]
=-m2-m+10
=-(m+)2+
∴△BPD面积的最大值为;
(3)如图,
作DK∥AB,AH⊥DK,AH交直线BD于点F,
∵由(2)得,DN=3,BN=9,
∵∠DBA=30°,
∴∠BDH=30°,
∴FG=DF×sin30°=FD,
∴当且仅当AH⊥DK时,AF+FH最小,
点M在整个运动中用时为:t=AF+FD=AF+FH,
∵lBD:y=-x+,
∴Fx=Ax=-2,F(-2,2)
∴当F坐标为(-2,2)时,用时最少.
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象与一次函数的图象分别交于M,N两点,已知点M(-2,m).
(1)求反比例函数的表达式;
(2)点P为y轴上的一点,当∠MPN为直角时,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.
(1)求证:四边形EBFC是菱形;
(2)如果∠BAC=∠ECF,求证:AC⊥CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上,设EG=x mm,EF=y mm.
(1)写出x与y的关系式;
(2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中, ,,,直线l从与AC重合的位置开始以每秒个单位的速度沿CB方向平行移动,且分别与CB,AB边交于D,E两点,动点F从A开始沿折线ACCBBA运动,点F在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位,点F与直线l同时出发,设运动的时间为t秒,当点F第一次回到点A时,点F与直线 l同时停止运动.运动过程中,作点F关于直线DE的对称点,记为点,若形成的四边形 为菱形,则所有满足条件的之和为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;
(1)求反比例函数的表达式;
(2)根据图象直接写出﹣x>的解集;
(3)将直线l1:y=- x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 3 | 6 | 10 | … |
日销售量(m件) | 198 | 194 | 188 | 180 | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(数学概念)
若等边三角形的三个顶点D、E、F分别在△ABC的三条边上,我们称等边三角形DEF是△ABC的内接正三角形.
(概念辨析)
(1)下列图中△DEF均为等边三角形,则满足△DEF是△ABC的内接正三角形的是 .
A. B.
C.
(操作验证)
(2)如图①.在△ABC中,∠B=60°,D为边AB上一定点(BC>BD),DE=DB,EM平分∠DEC,交边AC于点M,△DME的外接圆与边BC的另一个交点为N.
求证:△DMN是△ABC的内接正三角形.
(知识应用)
(3)如图②.在△ABC中,∠B=60°,∠A=45°,BC=2,D是边AB上的动点,若边BC上存在一点E,使得以DE为边的等边三角形DEF是△ABC的内接正三角形.设△DEF的外接圆⊙O与边BC的另一个交点为K,则DK的最大值为 ,最小值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com