精英家教网 > 初中数学 > 题目详情
如图所示,抛物线y=ax2++c经过原点O和A(4,2),与x轴交于点C,点M、N同时从原点O出发,点M以2个单位/秒的速度沿y轴正方向运动,点N以1个单位/秒的速度沿x轴正方向运动,当其中一个点停止运动时,另一点也随之停止.
(1)求抛物线的解析式和点C的坐标;
(2)在点M、N运动过程中,
①若线段MN与OA交于点G,试判断MN与OA的位置关系,并说明理由;
②若线段MN与抛物线相交于点P,探索:是否存在某一时刻t,使得以O、P、A、C为顶点的四边形是等腰梯形?若存在,请求出t值;若不存在,请说明理由.

【答案】分析:(1)利用待定系数法将A点坐标为(4,2),O点坐标为(0,0),代入求出二次函数解析式即可,进而利用y=0,求出图象与x轴交点坐标,即可得出C点坐标;
(2)①过点A作AB⊥x轴于点B,则OB=4,AB=2,进而得出Rt△MON∽Rt△OBA,即可求出MN⊥OA;
②依题意可得:当点P是点A关于抛物线对称轴的对称点时,四边形APOC为等腰梯形,得出P点坐标,及M(0,2t),N(t,0)设直线MN的解析式为y=kx+2t,将点N、P的坐标代入得求出t的值即可.
解答:解:(1)依题意,A点坐标为(4,2),O点坐标为(0,0),
代入解析式得

解得:
∴抛物线的解析式为y=-x2+
令y=0,则有0=-x2+
解得x1=0,x2=6,
故点C坐标为(6,0);

(2)①MN⊥OA,
理由如下:过点A作AB⊥x轴于点B,则OB=4,AB=2
由已知可得:==
∴Rt△MON∽Rt△OBA,
∴∠AOB=∠NMO,
∵∠NMO+∠MNO=90°,∴∠AOB+∠MNO=90°,
∴∠OGN=90°,∴MN⊥OA,
②存在
设点P的坐标为(x,y),依题意可得:当点P是点A关于抛物线对称轴的对称点时,四边形APOC为等腰梯形.
则点P坐标为(2,2),及M(0,2t),N(t,0)
设直线MN的解析式为y=kx+2t
将点N、P的坐标代入得

解得:(不合题意舍去),
所以,当t=3秒时,四边形OPAC是等腰梯形.
点评:此题主要考查了二次函数的综合应用以及等腰梯形的性质和待定系数法求二次函数解析式、相似三角形的判定等知识,得出P点坐标表示出M,N坐标进而求出直线MN的解析式是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,抛物线y=ax2+bx+c与两坐标轴的交点分别是A、B、E,且△ABE是等腰直角三角形,AE=BE,则下列关系式中不能成立的是(  )
A、b=0B、S△ABE=c2C、ac=-1D、a+c=0

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•河源二模)已知:如图所示,抛物线y=-x2+bx+c与x轴的两个交点分别为A(1,0),B(3,0).
(1)求抛物线的解析式;
(2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标;
(3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区一模)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(-1,0)、(0,-3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示,抛物线对应的函数解析表达式只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•陕西)如图所示的抛物线是把y=-x2经过平移而得到的.这时抛物线过原点O和x轴正向上一点A,顶点为P;
①当∠OPA=90°时,求抛物线的顶点P的坐标及解析表达式;
②求如图所示的抛物线对应的二次函数在-
1
2
≤x≤
1
2
时的最大值和最小值.

查看答案和解析>>

同步练习册答案