精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,已知斜边长为c,两直角边长为a,b.求证:
c+a
c-a
+
c-a
c+a
=
2c
b
分析:所证等式左边平方,通分并利用同分母分式的加法法则计算,得到结果为右边的平方,得证.
解答:解:∵在Rt△ABC中,已知斜边长为c,两直角边长为a,b,
∴c2=a2+b2
左边2=
c+a
c-a
+
c-a
c+a
+2=
(c+a)2+(c-a)2+2(c+a)(c-a)
(c+a)(c-a)
=
4c2
c2-a2
=
4c2
b2

右边2=
4c2
b2

∴左边=右边,即原式成立.
点评:此题考查了勾股定理,以及二次根式的化简求值,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求证:(1)△HEF≌△EHC;
(2)△HEF∽△HBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AB=6cm.把△ABC以点B为中心逆时针旋转,使点C旋转到AB边的延长线上得到Rt△A1BC1
(1)作出Rt△A1BC1(不要求写作法);
(2)用阴影表示旋转过程中边AC扫过的图形,然后求出它的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知∠C=90°,∠A=30°,BD是∠B的平分线,AC=18,则BD的值为(  )
A、3
3
B、9
C、12
D、6

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB为直径作⊙O,连接OC,过点C作⊙O的切线CD,D为切点,若sin∠OCD=
45
,求直径AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,已知tanB=2,则sinA的值是(  )

查看答案和解析>>

同步练习册答案