分析 (1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.
(2)先证明AD=BD,由△ACD∽△BFD,得$\frac{AC}{BF}$=$\frac{AD}{BD}$=1,即可解决问题.
解答 (1)证明:∵AD⊥BC,BE⊥AC,
∴∠BDF=∠ADC=∠BEC=90°,
∴∠C+∠DBF=90°,∠C+∠DAC=90°,
∴∠DBF=∠DAC,
∴△ACD∽△BFD.
(2)∵tan∠ABD=1,∠ADB=90°
∴$\frac{AD}{BD}$=1,
∴AD=BD,
∵△ACD∽△BFD,
∴$\frac{AC}{BF}$=$\frac{AD}{BD}$=1,
∴BF=AC=3.
点评 本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 15° | B. | 20° | C. | 25° | D. | 30° |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com