精英家教网 > 初中数学 > 题目详情
如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.
(1)解方程x2-10x+16=0,
得x1=2,x2=8,
则B(-2,0),C(8,0),
设抛物线解析式为y=ax2+bx+c,将A、B、C三点坐标代入抛物线得,
c=4
4a-2b+c=0
64a+8b+c=0

解得
a=-
1
4
b=1
1
2
c=4

故抛物线的解析式为y=-
1
4
x2+
3
2
x+4;

(2)设直线AC的解析式为y=kx+b,将A、C两点坐标代入得,
b=4
8k+b=0

解得
k=-
1
2
b=4

故直线AC的解析式为y=-
1
2
x+4;
直线AC上存在点D,使△BCD为直角三角形:
①∠DBC=90°时,x=-2,y=-
1
2
×(-2)+4=5,则D点坐标为(-2,5);
②∠BDC=90°时,设直线BD的解析式为y=2x+b1,则2×(-2)+b1=0,解得b1=4,故直线AC的解析式为y=2x+4;
联立两条直线的解析式
y=-
1
2
x+4
y=2x+4
,解得
x=0
y=4
,则D点坐标为(0,4);
综上所述D点坐标为(-2,5)或(0,4);

(3)P在抛物线AC上面积的最大值为16,P在抛物线AB上面积的最大值为20,
则S的取值范围为16<S<20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,已知A(5,4),B(10,4):
(1)求点C、D的坐标;
(2)若一次函数y=kx+3(k≠0)的图象过C点,求k的值;
(3)在(2)的条件下,①若将直线l:y=kx+3向下平移a个单位,将正方形分为上下两部分的面积比为7:3,试求出a的值;②若将直线l:y=kx+3平移后与以A为圆心,AC为半径的圆相切,直接写出平移后的直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a≠0)与直线y=kx+b交于A(3,0)、C(0,3)两点,抛物线的顶点坐标为Q(2,-1).点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PDy轴,交直线AC于点D.
(1)求该抛物线的解析式;
(2)设P点的横坐标为t,PD的长度为l,求l与t之间的函数关系式,并求l取最大值时,点P的坐标.
(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=-x2+bx+c经过直线y=-x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)点M为抛物线上的一个动点,求使得△ABM的面积与△ABD的面积相等的点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

数学家们通过长期的研究,得到了关于“等周问题”的重要结论:在周长相同的所有封闭平面曲线中,以圆所围成的面积最大.
“等周问题”虽然较为繁杂,但其根本思想基于下面2个事实:
事实1:等周长n边形的面积,当图形为正n边形时,其面积最大;
事实2:等周长n边形的面积,当边数n越大时,其面积也越大.
为了理解这些事实的合理性,曙光数学小组走出校门展开了下列课题研究.请你帮助他们解决其中的一些问题.
现有长度为100m的篱笆(可弯曲围成一个区域).
(1)如果用篱笆围成一个长方形鸡场,怎样围才能使鸡场的面积最大?为什么?
(2)如果用篱笆围成一个正五边形鸡场,那么与(1)中的正方形鸡场比较,哪个面积更大?请在事实1的基础上证明事实2:“等周长n边形的面积,当边数n越大时,其面积也越大.”
(3)利用事实1和事实2,请对“等周问题”的重要结论作出较为合理的解释.
(4)爱动脑筋的小明提出一个问题:如果借用一条充分长的直墙,将篱笆围成一个四边形鸡场,为了使鸡场的面积尽量大,所围成的长方形鸡场的长是宽的2倍(如图).你觉得他讲的是否有道理?你有没有更好的方法,使围成的四边形鸡场的面积更大?如果有,请说明你的方法.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,Rt△ABC中,∠A=90°,tanB=
3
4
,点P在线段AB上运动,点Q、R分别在线段BC、AC上,且使得四边形APQR是矩形.设AP的长为x,矩形APQR的面积为y,已知y是x的函数,其图象是过点(12,36)的抛物线的一部分(如图2所示).

(1)求AB的长;
(2)当AP为何值时,矩形APQR的面积最大,并求出最大值.
为了解决这个问题,孔明和研究性学习小组的同学作了如下讨论:
张明:图2中的抛物线过点(12,36)在图1中表示什么呢?
李明:因为抛物线上的点(x,y)是表示图1中AP的长与矩形APQR面积的对应关系,那么,(12,36)表示当AP=12时,AP的长与矩形APQR面积的对应关系.
赵明:对,我知道纵坐标36是什么意思了!
孔明:哦,这样就可以算出AB,这个问题就可以解决了.请根据上述对话,帮他们解答这个问题.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm2,设金色纸边的宽度为xcm2,那么y关于x的函数是(  )
A.y=(60+2x)(40+2x)B.y=(60+x)(40+x)
C.y=(60+2x)(40+x)D.y=(60+x)(40+2x)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店将进价为100元的某商品按120元的价格出售,可卖出300件;若商店在120元的基础上每涨价1元,就要少卖10件,而每降价1元,就可多卖30件.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为了获取最大利润,商店应将每件商品的售价定为多少元?

查看答案和解析>>

同步练习册答案