【题目】(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
【答案】(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为:AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8
.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=
,AE=
,
∴BE=2+
,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2
+
)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=
,AF=
,
∴D'F=2﹣
,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2
-
)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8
.
科目:初中数学 来源: 题型:
【题目】某校计划一次性购买排球和篮球,每个篮球的价格比排球贵30元;购买2个排球和3个篮球共需340元.
(1)求每个排球和篮球的价格:
(2)若该校一次性购买排球和篮球共60个,总费用不超过3800元,且购买排球的个数少于39个.设排球的个数为m,总费用为y元.
①求y关于m的函数关系式,并求m可取的所有值;
②在学校按怎样的方案购买时,费用最低?最低费用为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲乙两人以相同的路线前往距离单位的培训中心参加学习,图中
,
分别表示甲乙两人前往目的地所走的路程
(千米)随时间
(分)变化的函数图象,以下说法:
①乙比甲提前12分钟到达
②甲平均速度为0.25千米/小时
③甲、乙相遇时,乙走了6千米
④乙出发6分钟后追上甲,其中正确的是( )
A.①②B.③④C.①③④D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和妈妈开车去中央公园采风,小明爸爸发现他们忘记带画笔后立即开车追赶他们.假设妈妈和爸爸的车在同一直线公路上匀速行驶,当爸爸的车追上妈妈的车后,两车停下来,爸爸把画笔交给小明.然后小明和妈妈开车以原来速度的倍继续前行,爸爸则以来时一半的速度沿原路回家.设小明爸爸开车的时间为
(秒),两车间的距离为
(米),
关于
的部分函数关系如图所示,当小明爸爸回到家时,小明和妈妈正好行驶了全程的
,则小明家离中央公园的距离为________米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与
轴交于
、
两点,交
轴于点
,点
关于抛物线对称轴的对称点为点
.
(1)求线段的长度;
(2)为线段
上方抛物线上的任意一点,点
为
,一动点
从点
出发运动到
轴上的点
,再沿
轴运动到点
.当四边形
的面积最大时,求
的最小值;
(3)将线段沿
轴向右平移,设平移后的线段为
,直至
平行于
轴(点
为第2小问中符合题意的
点),连接直线
.将
绕着
旋转,设旋转后
、
的对应点分别为
、
,在旋转过程中直线
与
轴交于点
,与线段
交于点
.当
是以
为腰的等腰三角形时,写出
的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班、(2)班进行了检测,如图表示从两班各随机抽取的10名学生的得分情况.
(1)利用图中提供的信息,补全下表:
班级 | 平均数/分 | 中位数/分 | 众数/分 |
初三(1)班 | __________ | 24 | ________ |
初三(2)班 | 24 | _________ | 21 |
(2)若把24分以上(含24分)记为“优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;
(3)观察上图的数据分布情况,请通过计算说明哪个班的学生纠错的得分更稳定.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com