精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O是等边三角形ABC的外接圆,已知△ABC的边长为a,求图中阴影部分的面积.
分析:圆的面积减去三角形的面积就得到阴影部分的面积.
解答:精英家教网解:连接AO并延长与BC交于D,连接BO.(1分)
∵△ABC是等腰三角形,
∴AD⊥BC,且BD=DC,
∴AD平分∠BAC.
同理BO平分∠ABC,(2分)
∴AD=AB×sin60°=
3
2
a
,(3分)
BO=
BD
cos∠OBD
=
a
2•cos30°
=
1
3
a
,(4分)
S△ABC=
1
2
AD×BC=
1
2
×
3
2
a•a=
3
4
a2
,(5分)
S⊙o=π•BO2=
1
3
a2π
,(6分)
∴阴影部分的面积为:S=S⊙o-S△ABC=
1
3
a2π-
3
4
a2
.(8分)
点评:正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点构造直角三角形,把正多边形的计算转化为解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形.
(1)当∠BAC满足什么条件时,四边形ADFE是矩形;
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在;
(3)当△ABC分别满足什么条件时,平行四边形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•莱芜)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆,△EMN是随MN滑动而变化的三角通风窗(阴影部分均不通风).
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积.
(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数.
(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以△ABC的边AB、AC为边的等边三角ABD和等边三角形ACE,四边形ADFE是平行四边形
(1)当∠BAC满足什么条件时,平行四边形ADFE是矩形?
(2)当∠BAC满足什么条件时,平行四边形ADFE不存在?
(3)当△ABC分别满足什么条件时,平行四边形ADFE是正方形?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案