精英家教网 > 初中数学 > 题目详情
(1)在Rt△ABC中,∠A=90°,∠B=45°,AB=3,则AC=
 
.BC=
 

(2)在Rt△ABC中,∠B=90°,∠C=30°,AB=3,则AC=
 
.BC=
 

(3)在Rt△ABC中,∠C=90°,AC:AB=3:4,AB=25,则AC=
 
.BC=
 

(4)在Rt△ABC中,AB=6,AC=8,则BC=
 
考点:勾股定理
专题:
分析:(1)由∠B=45°,可知△ABC是等腰直角三角形,再根据勾股定理即可求出AC和BC的长;
(2)首先由∠C=30°,可求出AC的长,再由勾股定理即可求出BC的长;
(3)根据勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方即可求解.
(4)从当此直角三角形的两直角边分别是6和8时,当此直角三角形的一个直角边为6,斜边为8时这两种情况分析,再利用勾股定理即可求出第三边.
解答:解:(1)∵∠A=90°,∠B=45°,
∴∠C=45°,
∴AC=BC,
∵AB=3,
∴AC=BC=
3
2
2

故答案为:
3
2
2
3
2
2

(2)∵∠B=90°,∠C=30°,AB=3,
∴AC=6,
∴BC=
362-9
=3
3

(3)在Rt△ABC中,∠C=90°,AC:AB=3:4,AB=25,则AC=
25
×3=15,BC=
25
×4=20.
故答案为:15,20;
(4)4)①当AB、AC为直角边时,根据勾股定理得:
BC=
62+82
=10,
②当AC为斜边,AB为直角边时,根据勾股定理得:
BC=
82-62
=2
7

故BC=10或2
7
点评:本题考查了勾股定理的知识,解答的关键是熟练掌握勾股定理的定义及其在直角三角形中的表示形式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

一次函数y=7-4x和y=1-x的图象的交点坐标为
 
,则方程组
4x+y=7
x+y=1
的解为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正比例函数y=(k-1)x,函数值y随自变量x的值增大而减小,那么k的取值范围是
 
.在函数y=
2-x
中,自变量x的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如果5a2b 
1
3
(2m+1)
与-
1
2
b 
1
2
(m+3)
a2是同类项,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

将一元二次方程2x2=3x-6化成一般形式:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x2-5x-2009=0,则代数式
(x-2)2-(x-1)2+1
x-2
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

泉州向北京打长途电话,通话3分钟以内3.6元,每超过1分钟加收1元,某人打电话x分钟(x>3的整数)则应付电话费(  )
A、3.6x元
B、(3.6+x)元
C、(0.6+x)元
D、(x-3.6)元

查看答案和解析>>

科目:初中数学 来源: 题型:

若∠1+∠2=180°,∠2+∠3=180°,则∠1与∠3的关系(  )
A、互余B、互补
C、相等D、∠1=180°+∠3

查看答案和解析>>

科目:初中数学 来源: 题型:

下列各式中不成立的是(  )
A、
(-4)(-x2)
=2|x|
B、
402-242
=
64×16
=32
C、
(
5
9
-1)
2
=
5
9
-1=-
4
9
D、(
6
+
2
)(
6
-
2
)=4

查看答案和解析>>

同步练习册答案