【题目】如图,数轴的原点为O,点A、B、C是数轴上的三点,点B对应的数为1,AB=8,BC=3,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)
(1)求点A、C分别对应的数;
(2)求点P、Q分别对应的数;(用含t的式子表示)
(3)试问当t为何值时,OP=OQ?
【答案】(1)点A对应的数为﹣7,点C对应的数为4.(2)点P对应的数是﹣7+2t,点Q对应的数是4+t.(3)当t=1或11时,OP=OQ.
【解析】
(1)由点B对应的数及线段AB,BC的长,可找出点A,C对应的数;
(2)根据点P,Q的出发点、速度及方向,可找出当运动时间为t秒时点P,Q对应的数;
(3)分点P在原点的左侧及点P在原点的右侧两种情况考虑,由OP=OQ,即可得出关于t的一元一次方程,解之即可得出结论.
解:(1)1﹣8=﹣7,1+3=4,
∴点A对应的数为﹣7,点C对应的数为4.
(2)∵动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动,
∴当运动时间为t秒时,点P对应的数是﹣7+2t,点Q对应的数是4+t.
(3)①当P在原点左侧时,OP=7﹣2t,OQ=4+t,
∴7﹣2t=4+t,
解得:t=1;
②当P在原点右侧时,OP=2t﹣7,OQ=4+t,
∴2t﹣7=4+t,
解得:t=11.
综上所述:当t=1或11时,OP=OQ.
科目:初中数学 来源: 题型:
【题目】如图,OB为∠AOC内一条射线,∠AOB的余角是它自身的两倍.
(1)求∠AOB的度数;
(2)射线OE从OA开始,在∠AOB内以1°/s的速度绕着O点逆时针方向旋转,转到OB停止,同时射线OF在∠BOC内从OB开始以3°/s的速度绕O点逆时针方向旋转转到OC停止,设运动时间为t秒.
①若OE,OF运动的任一时刻,均有∠COF=3∠BOE,求∠AOC的度数;
②OP为∠AOC内任一射线,在①的条件下,当t=10时,以OP为边所有角的度数和的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得≌ 即可得,则可证得为的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OE∥AB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得与的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
试题解析:(1)证明:连接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切线;
(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为
【题型】解答题
【结束】
25
【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.
(1)填空:与∠AOE互补的角有 ;
(2)若∠COD=30°,求∠DOE的度数;
(3)当∠AOD=α°时,请直接写出∠DOE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A. ②③ B. ②⑤ C. ①③④ D. ④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)某学校“智慧方园”数学社团遇到这样一个题目:
如图1,在中,点在线段上,,,,,求的长.
经过社团成员讨论发现,过点作,交的延长线于点,通过构造就可以解决问题(如图.
请回答: , .
(2)请参考以上解决思路,解决问题:
如图3,在四边形中,对角线与相交于点,,,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简 [x]+(x)+[x)的结果是__________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com