精英家教网 > 初中数学 > 题目详情
17.如图a,已知长方形纸带ABCD,AB∥CD,AD∥BC,∠BFE=70°,将纸带沿EF折叠后,点C、D分别落在H、G的位置,再沿BC折叠成图b.
(1)图a中,∠AEG=40°;
(2)图a中,∠BMG=50°;
(3)图b中,∠EFN=30°.

分析 (1)先根据∠BFE=70°求出∠HFM的度数,进可得出∠EFC的度数,根据平行线的性质求出∠DEF的度数,由平角的定义即可得出结论;
(2)由(1)知,∠HFM=40°,再由翻折变换的性质得出∠H=∠C=90°,由三角形内角和定理得出∠HMF的度数,根据对顶角相等即可得出结论;
(3)先根据图形翻折变换的性质得出∠MFN=∠HFM=40°,再由∠BFE=70°即可得出结论.

解答 解:(1)∵∠BFE=70°,
∴∠HFM=180°-140°=40°.
∴∠EFC=70°+40°=110°.
∵AD∥BC,
∴∠DEF=180°-110°=70°,
∴∠GEF=∠DEF=70°,
∴∠AEG=180°-70°-70°=40°.
故答案为:40;

(2)∵由(1)知,∠HFM=40°,∠H=∠C=90°,
∴∠HMF=90°-40°=50°.
∵∠HMF与∠BMG是对顶角,
∴∠BMG=∠HMF=50°.
故答案为:50;

(3)∵△MNF由△MHF翻折而成,
∴∠MFN=∠HFM=40°,
∵∠BFE=70°,
∴∠EFN=∠BFE-∠MFN=70°-40°=30°.
故答案为:30.

点评 本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.下列几何体中,主视图、左视图、俯视图完全相同的是(  )
A.B.圆锥C.圆柱D.长方体

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.抛物线y=x2-2x+m(m>0)与x轴分别交于点A(x1,0),B(x2,0),点A在点B的左侧,当x=x2-2时,则y的值的取值范围是(  )
A.y<0B.y≤0C.y>mD.y≥m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在直角坐标系中,有一直角梯形AOCD,AD∥OC,AD=6,OC=8,sin∠DCO=$\frac{\sqrt{3}}{2}$,点M是OC的中点,点P从点M出发沿MO以每秒1个单位长度的速度向坐标原点O匀速运动,到达点O后以原速沿OM返回.点Q从点M出发以每秒1个单位长度的速度在射线MC上匀速运动,在点P,Q的运动过程中以PQ为直角边,点P为直角顶点向x轴上方作等腰直角三角形EPQ,点P,Q同时出发,当点P返回到点M时,P,Q同时停止运动,设点P,Q运动时间为t(t>0秒)
(1)求∠DCO的度数及坐D标;
(2)直接写出点P从点O返回M的运动过程中,P,Q之间的距离;
(3)当OP=2时,求△EPQ与梯形AOCD重叠部分的面积S;
(4)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值.请回答,该最大值能否持续一段时间?若能,直接写出t的取值范围;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:($\sqrt{5}$+$\sqrt{2}$)2-($\sqrt{5}$-3)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图所示,将图中的点(-5,2),(-3,4),(-1,2),(-4,2),(-2,2),(-2,3),(-4,3)做如下变化:
(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?
(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?
(3)求出以点(-5,2),(-3,4),(-1,2)为顶点的三角形的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:$\sqrt{15}$×($\frac{\sqrt{5}}{3}$)-1÷$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,矩形纸片ABCD中,AB=4,AD=6,点P是边BC上的动点.现将纸片折叠,使点A与点P重合,折痕与矩形边的交点分别为E,F.
(1)当点P恰好为BC的中点时,折痕EF的长度为$\frac{125}{24}$;
(2)设BP=x,要使折痕始终与边AB,AD有交点,x的取值范围是6-$2\sqrt{5}$≤x≤4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在?ABCD中,CE平分∠BCD交AD边于点E,且AD=5,CD=3,则AE长为2.

查看答案和解析>>

同步练习册答案