如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 .
科目:初中数学 来源: 题型:
一次函数y=(k-)x-3k+10(k为偶数)的图象经过第一、二、三象限,与x轴、y轴分别交于A、B两点,过点B作一直线与坐标轴围成的三角形面积为2,交x轴于点C.
(1)求k的值;
(2)若一抛物线经过点A、B、C三点,求此抛物线的解析式。
(3)当抛物线开口向上时过A、B、C三点作△ABC,求tan∠ABC的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.
(1)填空:∠AHB=____________;AC=_____________;
(2)若,求x.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.
(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;
(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com