精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是大半圆O的直径,AO是小半圆M的直径,点P是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.
(1)求证:CD是小半圆M的切线;
(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y. ①求y与x之间的函数关系式,并写出自变量x的取值范围;
②当y=3时,求P,M两点之间的距离.

【答案】
(1)解:连接CO、CM,如图1所示.

∵AO是小半圆M的直径,

∴∠ACO=90°即CO⊥AP.

∵OA=OP,

∴AC=PC.

∵AM=OM,

∴CM∥PO.

∴∠MCD=∠PDC.

∵CD⊥OP,

∴∠PDC=90°.

∴∠MCD=90°,即CD⊥CM.

∵CD经过半径CM的外端C,且CD⊥CM,

∴直线CD是小半圆M的切线


(2)解:①∵CO⊥AP,CD⊥OP,

∴∠OCP=∠ODC=∠CDP=90°.

∴∠OCD=90°﹣∠DCP=∠P.

∴△ODC∽△CDP.

∴CD2=DPOD.

∵PD=x,CD2=y,OP= AB=4,

∴y=x(4﹣x)=﹣x2+4x.

当点P与点A重合时,x=0;当点P与点B重合时,x=4;

∵点P在大半圆O上运动(点P不与A,B两点重合),

∴0<x<4.

∴y与x之间的函数关系式为y=﹣x2+4x,

自变量x的取值范围是0<x<4.

②当y=3时,﹣x2+4x=3.

解得:x1=1,x2=3.

(i)当x=1时,如图2所示.

在Rt△CDP中,

∵PD=1,CD=

∴tan∠CPD= =

∴∠CPD=60°.

∵OA=OP,

∴△OAP是等边三角形.

∵AM=OM,

∴PM⊥AO.

∴PM=

=

=2

(ii)当x=3时,如图3所示.

同理可得:∠CPD=30°.

∵OA=OP,

∴∠OAP=∠APO=30°.

∴∠POB=60°

过点P作PH⊥AB,垂足为H,连接PM,如图3所示.

∵sin∠POH= = =

∴PH=2

同理:OH=2.

在Rt△MHP中,

∵MH=4,PH=2

∴PM=

=

=2

综上所述:当y=3时,P,M两点之间的距离为2 或2


【解析】(1)连接CO、CM,只需证到CD⊥CM.由于CD⊥OP,只需证到CM∥OP,只需证到CM是△AOP的中位线即可.(2)①易证△ODC∽△CDP,从而得到CD2=DPOD,进而得到y与x之间的函数关系式.由于当点P与点A重合时x=0,当点P与点B重合时x=4,点P在大半圆O上运动(点P不与A,B两点重合),因此自变量x的取值范围为0<x<4.②当y=3时,得到﹣x2+4x=3,求出x.根据x的值可求出CD、PD的值,从而求出∠CPD,运用勾股定理等知识就可求出P,M两点之间的距离.
【考点精析】解答此题的关键在于理解平行线的判定与性质的相关知识,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D在同一直线上.

(1)求证:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,点F是CE的中点,连结AF,求∠FAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国“蛟龙”号深潜器目前最大深潜极限为7062.68米.某天该深潜器在海面下1800米的A点处作业(如图),测得正前方海底沉船C的俯角为45°,该深潜器在同一深度向正前方直线航行2000米到B点,此时测得海底沉船C的俯角为60°.

(1)沉船C是否在“蛟龙”号深潜极限范围内?并说明理由;
(2)由于海流原因,“蛟龙”号需在B点处马上上浮,若平均垂直上浮速度为2000米/时,求“蛟龙”号上浮回到海面的时间.(参考数据: ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.

(1)求证:ABE≌△EGF;

(2)若AB=2,S△ABE=2S△ECF,求BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(  )

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

(材料)如图,对任意符合条件的直角三角形BAC,绕其锐角顶点逆时针旋转90°DAE,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于RtBAERtBFE的面积之和,根据图形我们就能证明勾股定理: .

(请回答)如图是任意符合条件的两个全等的RtBEARtACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC 中,AB=AC,BD 平分∠ABC AC G,DM//BC 交∠ABC 的外角平分线于 M, AB、AC F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE. 其中一定正确的有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案