精英家教网 > 初中数学 > 题目详情
已知二次函数的图象与x轴交于(,0)和(,0),其中,与轴交于正半轴上一点.下列结论:①;②;③;④.其中所有正确结论的序号是_______.
②④

试题分析:∵y=ax2+bx+c ∴x1+x2=-, x1·x2= ,① x2="1>0," -2<x1<-1 ∴<0, -<0 又二次函数与y轴交于正半轴∴c>0 得a<0 b<0, ② ∵ac<b2 图像与x轴有两个交点,4ac-b2>0 ∴ac<b2③∵x2="1" ∴a+b+c="0" ∴c="-a-b" ∴<0  -a-b>0即-a>b④ ∵a+b+c="0∴b=-a-c" 又-<0 ∴>0 即>0 ∴-a-c<0 ∴-a<c 根据韦达定理 X1 乘以X2 等于c/a  ∵a﹤0  所以 同时除以a变化为 –1﹤c/a﹤-2   又∵方程中x2=1    -2<x<1  ∴-2<x1x2<1
点评:熟练掌握二次函数图像与性质,由题意知,图像经过y轴的正半轴得到截距c>0,根据达定理得到,a<0,b<0∴①错误.再两点交于x轴,∴②成立。又一点坐标x="1,a+b+c=0" 将c=-a-b代入不等式中得到③错误,④同样将b=-a-c,代入不等式中得到结果正确。中难题型,中考常出现,本题关键是利用了韦达定理,还有函数图像的性质。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线l:交y轴于点A.抛物线的图象过点E(-1,0),并与直线l相交于A、B两点.

⑴ 求抛物线的解析式;
⑵ 设点P是抛物线的对称轴上的一个动点,当△PAE的周长最小时,求点P的坐标;
⑶ 在x轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的解析式是
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,平面直角坐标系中,抛物线轴交于AB两点,点CAB的中点,CDABCD=AB.直线BE轴平行,点F是射线BE上的一个动点,连接ADAFDF.

(1)若点F的坐标为(),AF=.
①求此抛物线的解析式;
②点P是此抛物线上一个动点,点Q在此抛物线的对称轴上,以点AFPQ为顶点构成的四边形是平行四边形,请直接写出点Q的坐标;
(2)若,且AB的长为,其中.如图2,当∠DAF=45时,求的值和∠DFA的正切值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(12分)“快乐购”超市购进一批25元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(x≥30)存在如图所示的一次函数关系式。

(1)试求出y与x的函数关系式;
(2)设“快乐购”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?
(3)根据市场调查,该绿色食品每天可获利润不超过3080元,现该超市经理要求每天利润不得低于3000元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案)。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.
(1)试求y与x之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,二次函数的图象经过点,且与x轴交点的横坐标为,其中下列结论:①;②;③;④;正确的结论是         .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6分)(1)如图:靠着22 m长的房屋后墙,围一块150 m2的矩形鸡场,现在有篱笆共40 m。求矩形的长、宽各多少米?

(2)若把“围一块150 m2的矩形鸡场”改为“围一块S m2的矩形鸡场”,其它条件不变,能否使S最大。若能,请你求出此时矩形的长、宽及最大面积;若不能,请你说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

由二次函数,可知(   )
A.其图象的开口向下B.其图象的对称轴为直线
C.其最小值为1D.当时,y随x的增大而增大

查看答案和解析>>

同步练习册答案