精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在x轴的正半轴上,点B在反比例函数y=(k>0,x>0)的图象上,延长AB交该函数图象于另一点C,BC=3AB,点D也在该函数的图象上,BD=BC,以BC,BD为边构造CBDE,若点O,B,E在同一条直线上,且CBDE的周长为k,则AB的长为_____

【答案】

【解析】

解:四边形CBDE是平行四边形,BD=BC,

四边形CBDE是菱形,

∵CBDE的周长为k,

∴BC=k,

∵BC=3AB,

∴AB=k,

设点C的坐标为(a,),

∵BC=3AB,

B的坐标为(4a,),

∵BD=BC,点O、B、E在同一条直线上,

B在直线y=x上,

∴4a=,得k=16a2

C(a,16a),点B(4a,4a),

∴BC2=(4a﹣a)2+(4a﹣16a)2=9a2+144a2=153a2

菱形CBDE的周长为k,

∴BC2===16a4

∴16a4=153a2,得a2=

∴k=16a2=16×=153,

∴AB=k =

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地,(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图.快车到达甲地时,慢车距离甲地__米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BCD=110°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF,则∠CDF等于(  )

A. 15° B. 25° C. 45° D. 55°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,点OAC边延长线上的一点,以点O为圆心的圆与射线AC交于点D和点H,过点DDFAB,DF交⊙O于点F,交BC边于点B,且BF=BE.

(1)判断直线BF与⊙O的位置关系,并说明理由;

(2)若∠A=30°,BC=8,EF=6,请求出⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点A按逆时针方向旋转至AB′C′(B与B′,C与C′分别是对应顶点),使AB′BC,B′C′分别交AC,BC于点D,E,已知AB=AC=5,BC=6,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,它的对称轴与x轴交于点F,过点C作CE∥x轴交抛物线于另一点E,连结EF,AC.

(1)求该抛物线的表达式及点E的坐标;

(2)在线段EF上任取点P,连结OP,作点F关于直线OP的对称点G,连结EG和PG,当点G恰好落到y轴上时,求EGP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.

(1)求证:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在RtABC中,∠ABC=90°,BD⊥AC于点D,且AB=5,AD=4,在AD上取一点G,使AG=,点P是折线CB﹣BA上一动点,以PG为直径作O交AC于点E,连结PE.

(1)求sinC的值;

(2)当点P与点B重合时如图所示,⊙O交边AB于点F,求证:∠EPG=∠FPG;

(3)点P在整个运动过程中:

当BC或AB与O相切时,求所有满足条件的DE长;

点P以圆心O为旋转中心,顺时针方向旋转90°得到P′,当P′恰好落在AB边上时,求OPP′与OGE的面积之比(请直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=5,BC=6,ADBC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为____

查看答案和解析>>

同步练习册答案