精英家教网 > 初中数学 > 题目详情
19、已知:如图,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F.
(1)求证:△ABE≌△ADF;
(2)判断△EFC的形状,并说明理由.
分析:(1)由于四边形ABCD是菱形,那么∠B=∠D,AB=AD,而AE⊥BC,AF⊥DC,易知∠AEB=∠AFD=90°,利用AAS可证△AEB≌△AFD;
(2)由(1)得△AEB≌△AFD,那么BE=DF,而BC=CD,利用等式性质易得CE=CF,从而可知△CEF为等腰三角形.
解答:解:(1)∵四边形ABCD是菱形,
∴∠B=∠D,AB=AD,
又∵AE⊥BC,AF⊥DC,
∴∠AEB=∠AFD=90°,
∴△AEB≌△AFD;
(2)△CEF为等腰三角形.      
∵△AEB≌△AFD,
∴BE=DF,
又∵BC=CD,
∴CE=CF,
∴△CEF为等腰三角形.
点评:本题考查了菱形的性质、全等三角形的判定和性质、等腰三角形的判定.解题的关键是证明△AEB≌△AFD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知:如图,在菱形ABCD中,E、F分别是BC、CD的中点.
(1)求证:△ABE≌△ADF;

(2)过点C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•重庆)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.
(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在菱形ABCD中,E为BC边上一点,∠AED=∠B.
(1)求证:△ABE∽△DEA;
(2)若AB=4,求AE•DE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,在菱形ABCD中,AE⊥BC于点E,BE=12,sinD=
513

(1)求菱形的边长;
(2)求菱形的面积.

查看答案和解析>>

同步练习册答案