精英家教网 > 初中数学 > 题目详情
8.如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P=45°.

分析 由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.

解答 解:∵OA⊥OB,
∴∠OAB+∠ABO=90°,∠AOB=90°.
∵PA平分∠MAO,
∴∠PAO=$\frac{1}{2}$∠OAM=$\frac{1}{2}$(180°-∠OAB).
∵PB平分∠ABO,
∴∠ABP=$\frac{1}{2}$∠ABO,
∴∠P=180°-∠PAO-∠OAB-∠ABP=180°-$\frac{1}{2}$(180°-∠OAB)-∠OAB-$\frac{1}{2}$∠ABO=90°-$\frac{1}{2}$(∠OAB+∠ABO)=45°.

点评 本题考查了三角形内角和定理,解题的关键是找出∠P=90°-$\frac{1}{2}$(∠OAB+∠ABO).本题属于基础题,难度不大,解决该题型题目时,熟练运用三角形内角和定理解决问题是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.如图,在四边形ABCD中,AD∥BC,AB⊥BC,对角线AC⊥CD,点E在边BC上,且∠AEB=45°,CD=10.
(1)求AB的长;
(2)求EC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在Rt△ABC中,∠C=90°,BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.
(1)设DE=x,则AD=$\frac{4}{3}$x(用含x的代数式表示);
(2)求矩形DEFC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.一次函数y=kx+b的图象如图,当y≤3时,x的取值范围是x≥1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在△ABC中,AB=5cm,BC=8cm,则AC边的取值范围是3<AC<13.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在正方形ABCD中,E是CD的一个三等分点,BE与AC相交于点F,则△BCF与△ABF的面积之比是1:3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.若a+$\frac{1}{a}$=3,则a2+a3+a4+$\frac{1}{{a}^{2}}$+$\frac{1}{{a}^{3}}$+$\frac{1}{{a}^{4}}$=104.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.“已知点P在直线 l 上,利用尺规作图过点P作直线 PQ⊥l”的作图方法如下:
①以点P为圆心,以任意长为半径画弧,交直线l于A、B两点;
②分别以A、B两点为圆心,以大于$\frac{1}{2}$AB的长为半径画弧,两弧交于点Q;
③连接PQ.则直线 PQ⊥l.请说明此方法依据的数学原理是三线合一或到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线..

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图是跷跷板示意图,支柱OC与地面垂直,点O是横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m,OC=0.5m,通过计算得到此时的h1,再将横板AB换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1=h2(填“>”“=”或“<”)

查看答案和解析>>

同步练习册答案