精英家教网 > 初中数学 > 题目详情
14.如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E,BE=2,BC=6.
(1)求证:△ABD∽△CBE;
(2)求AE的长度;
(3)设AD与CE交于F,求△CFD的面积.

分析 (1)先根据等腰三角形的性质得出AD⊥BC,再由CE⊥AB得出∠ADB=∠CEB=90°,进而可得出结论;
(2)根据△ABD∽△CBE可得出$\frac{AB}{CB}$=$\frac{BD}{BE}$,进而可得出结论;
(3)先根据勾股定理求出CE的长,再由∠ADC=∠CEB=90°,∠ECB=∠ECB得出△CDF∽△CEB,由相似三角形的性质可得出DF的长,根据三角形的面积可得出结论.

解答 解:(1)证明:∵在△ABC中,AB=AC,BD=CD,
∴AD⊥BC.
∵CE⊥AB,
∴∠ADB=∠CEB=90°.
∵∠B=∠E,
∴△ABD∽△CBE;

(2)∵△ABD∽△CBE,
∴$\frac{AB}{CB}$=$\frac{BD}{BE}$,即$\frac{AB}{6}$=$\frac{3}{2}$,解得AB=9,
∴AE=AB-BE=9-2=7;

(3)在Rt△BEC中,
∵BE=2,BC=6,
∴CE=$\sqrt{B{C}^{2}-B{E}^{2}}$=$\sqrt{{6}^{2}-{2}^{2}}$=4$\sqrt{2}$.
∵∠ADC=∠CEB=90°,∠ECB=∠ECB,
∴△CDF∽△CEB,
∴$\frac{CD}{CE}$=$\frac{DF}{BE}$,即$\frac{3}{4\sqrt{2}}$=$\frac{DF}{2}$,解得DF=$\frac{3\sqrt{2}}{4}$,
∴S△CFD=$\frac{1}{2}$×$\frac{3\sqrt{2}}{4}$×3=$\frac{9\sqrt{2}}{8}$.

点评 本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.先化简,再求值;
(a-2b)2+(a-b)(a+b)-2(a-b)(a-3b),其中a=-$\frac{1}{4}$,b=-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.解方程:x-$\frac{x-1}{2}$=$\frac{2}{3}$$-\frac{x+2}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,根据下列条件解直角三角形.
(1)a=6,b=2$\sqrt{3}$;
(2)c=100,∠A=30°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程
(1)2x2+5x=4
(2)2(x-2)2=(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
原题:如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:$\frac{DP}{BQ}$=$\frac{PE}{QC}$.
(1)尝试探究:在图1中,由DP∥BQ得△ADP∽△ABQ(填“≌”或“∽”),则$\frac{DP}{BQ}$=$\frac{AP}{AQ}$,同理可得$\frac{PE}{QC}$=$\frac{AP}{AQ}$,从而$\frac{DP}{BQ}$=$\frac{PE}{QC}$.
(2)类比延伸:如图2,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交DE于M、N两点,若AB=AC=1,则MN的长为$\frac{\sqrt{2}}{9}$.
(3)拓展迁移:如图3,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG、AF分别交于DE于M、N两点,AB<AC,求证:MN2=DM•EN.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.

(1)求抛物线的表达式;
(2)直接写出点C的坐标,并求出△ABC的面积;
(3)点P是抛物线上一动点,且位于第四象限,当△ABP的面积为6时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:$\frac{5x+1}{6}-\frac{2x-1}{3}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.“泰山松树园”计划购买甲、乙两种树苗共6000株,甲种树苗每株0.5元,乙种树苗每株0.8元,相关资料表明:甲、乙两种树苗的成活率分别为90%和95%.
(1)若购买这批树苗的钱不超过4200元,应如何选购树苗?
(2)若要使这批树苗的成活率不低于93%,且购买树苗的总费用最低,应如何选购树苗?

查看答案和解析>>

同步练习册答案