精英家教网 > 初中数学 > 题目详情
16.已知⊙O的半径为1,A、B、C是⊙O上的三等分点,圆弧$\widehat{AOB}$,$\widehat{BOC}$,$\widehat{COA}$相交于O,则图中阴影部分面积是π-$\frac{3\sqrt{3}}{2}$.

分析 如图,连接AC、OA、OC.先求出弓形$\widehat{AmC}$的面积,根据S=6×弓形$\widehat{AmC}$的面积-S圆O计算即可.

解答 解:如图,连接AC、OA、OC.

∵弓形$\widehat{AmC}$的面积=S扇形OAC-S△AOC=$\frac{1}{3}$π-$\frac{\sqrt{3}}{4}$,
∴S=6×弓形$\widehat{AmC}$的面积-S圆O=2π-$\frac{3\sqrt{3}}{2}$-π=π-$\frac{3\sqrt{3}}{2}$,
故答案为π-$\frac{3\sqrt{3}}{2}$.

点评 本题考查圆的面积公式.扇形的面积公式,弓形的面积等知识,解题的关键是学会利用分割法求面积,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.解方程:
$\frac{5}{2x-1}$+$\frac{3}{1-2x}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,从一个直径为2的圆形铁皮中剪下一个圆心角为60°的扇形ABC,将剪下来的扇形围成一个圆锥,求圆锥的底面圆半径(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知一次函数y1=x的图象与反比例函数y2=$\frac{k}{x}$的图象相交,其中一个交点的纵坐标为2,求出两函数的交点坐标并画出图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某人沿坡角为30°的斜坡上山,行了1000m到达山顶,求山高和行进的水平距离.(参考数据:$\sqrt{3}$≈1.732).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.若圆锥的底面直径为6cm,母线长为5cm,那么圆锥的侧面积为(  )
A.7.5π cm2B.30π cm2C.15π cm2D.22.5π cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,△PCQ的周长为4,正方形ABCD的边长是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在⊙O中,AB是直径,CO⊥AB,D是CO的中点,DE∥AB,则$\widehat{CE}$与$\widehat{BE}$之间的等量关系是什么?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,是斜坡AC上的一根电线杆AB用钢丝绳BC进行固定的平面图.已知斜坡AC的长度为4m,钢丝绳BC的长度为5m,AB⊥AD于点A,CD⊥AD于点D,若CD=2m,则电线杆AB的高度是多少.(结果保留根号)

查看答案和解析>>

同步练习册答案