精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+1与x轴交于两点A(-1,0),B(1,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)过点B作BDCA抛物线交于点D,求四边形ACBD的面积;
(3)在x轴下方的抛物线上是否存在点M,过M作MN⊥x轴于点N,使以A、M、N为顶点的三角形与△BCD相似?若存在,则求出点M的坐标;若不存在,请说明理由.
(1)依题意,得:
a-b+1=0
a+b+1=0
,解得
a=-1
b=0

∴抛物线的解析式为:y=-x2+1;

(2)易知A(-1,0),C(0,1),则直线AC的解析式为:y=x+1;
由于ACBD,可设直线BD的解析式为y=x+h,则有:1+h=0,h=-1;
∴直线BD的解析式为y=x-1;联立抛物线的解析式得:
y=-x2+1
y=x-1
,解得
x=1
y=0
x=-2
y=-3

∴D(-2,-3);
∴S四边形ACBD=S△ABC+S△ABD=
1
2
×2×1+
1
2
×2×3=4;

(3)∵OA=OB=OC=1,
∴△ABC是等腰Rt△;
∵ACBD,
∴∠CBD=90°;
易求得BC=
2
,BD=3
2

∴BC:BD=1:3;
由于∠CBD=∠MNA=90°,若以A、M、N为顶点的三角形与△BCD相似,则有:
△MNA△CBD或△MNA△DBC,得:
MN
AN
=
BC
BD
=
1
3
MN
AN
=
BD
BC
=3;
即MN=
1
3
AN或MN=3AN;
设M点的坐标为(x,-x2+1),
①当x>1时,AN=x-(-1)=x+1,MN=x2-1;
∴x2-1=
1
3
(x+1)或x2-1=3(x+1)
解得x=
4
3
,x=-1(舍去)或x=4,x=-1(舍去);
∴M点的坐标为:M(
4
3
,-
7
9
)或(4,-15);
②当x<-1时,AN=-1-x,MN=x2-1;
∴x2-1=
1
3
(-x-1)或x2-1=3(-x-1)
解得x=
2
3
,x=-1(两个都不合题意,舍去)或x=-2,x=-1(舍去);
∴M(-2,-3);
故存在符合条件的M点,且坐标为:M(
4
3
,-
7
9
)或(4,-15)或(-2,-3).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知抛物线y=ax2+bx-2经过(2,1)和(6,-5)两点.
(1)求抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,点P是在直线x=4右侧的此抛物线上一点,过点P作PM⊥x轴,垂足为M.若以A、P、M为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点O、B、E、F为顶点的四边形是菱形,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;
(3)连接OA、AB,如图2,在x轴下方的抛物线上是否存在点P,使得△OBP与△OAB相似?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为(  )
A.0.4米B.0.16米C.0.2米D.0.24米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=ax2+bx+c的图象过点A(2,4),顶点的横坐标为
1
2
,它的图象与x轴交于两点B(x1,0)、C(x2,0),与y轴交于点D,且x12+x22=13.试问:y轴上是否存在点P,使得△POB与△DOC相似(O为坐标原点)?若存在,请求出过P、B两点直线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,有长24米的篱笆,一面利用墙(墙的最大长度为10米),围成中间有一道篱笆的长方形花圃.设花圃的边AB长为x,花圃的面积为s米2
(1)请求出s与x的函数关系式.
(2)按照题中要求,所围的花圃面积能否是48米2?若能,求出的x值;若不能,请说明理由.
(参考公式:二次函数y=ax2+bx+c=0,当x=-
b
2a
时,y最大(小)值=
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

据统计每年由于汽车超速行驶而造成的交通事故是造成人员死亡的主要原因之一.行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140千米/时),对这种汽车的刹车距离进行测试,测得的数据如下表:
刹车时车速(千米/时)051015202530
刹车距离(米)00.10.30.611.52.1
(1)在如图所示的直角坐标系中以车速为x轴,以刹车距离为y轴描出这些数据所表示的点,并用光滑的曲线连接这些点,得到某函数的大致图象.
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式.
(3)一辆该型号的汽车在国道上发生了交通事故,现场测得刹车距离为46.5米,请推测刹车时速度是多少?请问在事故发生时,汽车是否超速行驶?

查看答案和解析>>

同步练习册答案