精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AD∥BC,∠ABC=90°,BF⊥CD于F,延长BF交AD的延长线于E,延长CD交BA的延长线于G,且DG=DE,AB=数学公式,CF=6.
(1)求线段CD的长;
(2)H在边BF上,且∠HDF=∠E,连接CH,求证:∠BCH=45°-数学公式∠EBC.

(1)解:连接BD,
由∠ABC=90°,AD∥BC得∠GAD=90°,
又∵BF⊥CD,
∴∠DFE=90°
又∵DG=DE,∠GDA=∠EDF,
∴△GAD≌△EFD,
∴DA=DF,
又∵BD=BD,
∴Rt△BAD≌Rt△BFD(HL),
∴BF=BA=,∠ADB=∠BDF
又∵CF=6,
∴BC=
又∵AD∥BC,
∴∠ADB=∠CBD,
∴∠BDF=∠CBD,
∴CD=CB=8.

(2)证明:∵AD∥BC,
∴∠E=∠CBF,
∵∠HDF=∠E,
∴∠HDF=∠CBF,
由(1)得,∠ADB=∠CBD,
∴∠HDB=∠HBD,
∴HD=HB,
由(1)得CD=CB,
∴△CDH≌△CBH,
∴∠DCH=∠BCH,
∴∠BCH=∠BCD==
分析:(1)连接BD,由题意得出∠GAD=90°,从而证明△GAD≌△EFD,得出DA=DF再证明Rt△BAD≌Rt△BFD,利用勾股定理求出BC,继而得出线段CD的长.
(2)结合(1)可得出∠ADB=∠CBD,CD=CB,然后证明△CDH≌△CBH,得出∠DCH=∠BCH后,即可得出结论.
点评:此题考查了梯形、全等三角形的判定及性质,综合性较强,解答本题的关键是利用三角形全等的知识,将已知线段进行转化,另外要注意等角代换的应用,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案