精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C处与乙船相遇.假设乙船的速度和航向保持不变,求:

(1)港口A与小岛C之间的距离;

(2)甲轮船后来的速度.

【答案】1AC间的距离为(1515)海里 (25海里/小时

【解析】

试题(1)作BD⊥AC于点D

由题意可知:AB30×130∠BAC30°∠BCA45°

Rt△ABD

∵AB30∠BAC30°

∴BD15ADABcos30°15

Rt△BCD中,

∵BD15∠BCD45°

∴CD15BC15

∴ACADCD1515

AC间的距离为(1515)海里 6

(2)∵AC1515

轮船乙从AC的时间为1

BC的时间为11

∵BC15

轮船甲从BC的速度为5(海里/小时)

答:轮船甲从BC的速度为5海里/小时

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】近年来网约车十分流行,初三某班学生对美团滴滴两家网约车公司各10名司机月收入进行了一项抽样调查,司机月收入(单位:千元)如图所示:

根据以上信息,整理分析数据如下:

平均月收入/千元

中位数/千元

众数/千元

方差/千元2

美团

6

6

1.2

滴滴

6

4

(1)完成表格填空;

(2)若从两家公司中选择一家做网约车司机,你会选哪家公司,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过AABx轴,截取AB=OA(BA右侧),连接OB,交反比例函数y=的图象于点P.

(1)求反比例函数y=的表达式;

(2)求点B的坐标;

(3)求OAP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B处的俯角为18°48,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为 参考数据:tan78°12′≈4.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB90°,∠A30°,BC6DE分别是ABAC边的中点,将△ABC绕点B顺时针旋转60°到△ABC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点 O ABC 的边 AB 上一点,以 OB 为半径的O BC 于点 D,过点 D 的切线交 AC 于点 E,且 DEAC

(1)证明:ABAC

(2) ABcmBC=2cm,当点 O AB 上移动到使O 与边 AC 所在直线相切时O 的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正确的个数为(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将DCE沿DE对折至DFE,延长EF交边AB于点G,连接DGBF,给出下列结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④SBEF=.其中正确结论的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步练习册答案