精英家教网 > 初中数学 > 题目详情

【题目】如图,点ORtABCAB边上一点,∠ACB90°,⊙OAC相切于点D,与边ABBC分别相交于点EF

(1)求证:DEDF

(2)BC3sinA时,求AE的长.

【答案】(1)见解析;(2)AE=

【解析】

(1)连接ODOF,由切线的性质可得∠ADO90°,从而得到ODBC,从而得到∠AOD=∠ABC,∠DOF=∠OFB,并由半径相等,再进行角的代换从而得到∠AOD=∠DOF,即可求解.

(2) RtABC,有正弦的定义求出AB,再由RtAOD中,设圆的半径为r,通过正弦建立比例式方程从而进行求解.

解:(1)如图所示,连接ODOF

∵⊙OAC相切于点D

∴∠ADO=90°,

∵∠ACB=90°,

ODBC

∴∠AOD=∠ABC,∠DOF=∠OFB

OBOF

∴∠ABC=∠OFB

∴∠AOD=∠DOF

DEDF

(2)在Rt△ABC中,∵BC=3,sinA

AB=5,

O的半径为r,则OBODOEr

AOABOB=5﹣rAE=5﹣2r

Rt△AOD中,∵sinA

,解得r

AE=5﹣2r

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】有一种市场均衡模型是用一次函数和二次函数来刻化的:根据市场调查,某种商品的市场需求量y1(吨)与单价x(百元)之间的关系可看作是二次函数y1=4﹣x2,该商品的市场供应量y2(吨)与单价x(百元)之间的关系可看作是一次函数y2=4x﹣1.

(1)当需求量等于供应量时,市场达到均衡.此时的单价x(百元)称为均衡价格,需求量(供应量)称为均衡数量.求所述市场均衡模型的均衡价格和均衡数量.

(2)当该商品单价为50元时,此时市场供应量与需求量相差多少吨?

(3)根据以上信息分析,当该商品供不应求供大于求时,该商品单价分别会在什么范围内?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y的图象在第二象限内,点A是图象上的任意一点,AMx轴于点MO是原点.若SAOM=3,求该反比例函数的解析式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为、宽为的全等小矩形,且> .(以上长度单位:cm)

(1)观察图形,可以发现代数式可以因式分解为

(2)若每块小矩形的面积为10,四个正方形的面积和为58,试求图中所有裁剪线(虚线部分)长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,点D⊙O外一点,ABADBD⊙O于点CAD⊙O于点E,点PAC的延长线上一点,连接PBPD,且PDAD

(1)判断PB⊙O的位置关系,并说明理由;

(2)连接CE,若CE3AE7,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠A=90°,ADBC,垂足为D.给出下列四个结论:①sinα=sinB;sinβ=sinC;sinB=cosC;sinα=cosβ.其中正确的结论有_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置侧倾器测得楼房CD顶部点D的仰角为30°,向前走20米到达E处,测得点D的仰角为60°.已知侧倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1米)(  )

A. 30 B. 18.9 C. 32.6 D. 30.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2011山东济南,223分)如图1△ABC中,∠C=90°∠ABC=30°AC=m,延长CB至点D,使BD=AB

∠D的度数;

tan75°的值.

2)如图2,点M的坐标为(20),直线MNy轴的正半轴交于点N∠OMN=75°.求直线MN的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;;则对于图①来说,BD可以看作是正_____边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是_____边形的边长.

查看答案和解析>>

同步练习册答案