精英家教网 > 初中数学 > 题目详情

【题目】某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成。已知墙长为18(如图所示),设这个苗圃园垂直于墙的一边的长为x.

(1)若平行于墙的一边长为y米,直接写出yx的函数关系式及其自变量x的取值范围.

(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.

【答案】112.5

【解析】

试题(1)根据题意即可求得yx的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<15;

(2)设矩形苗圃园的面积为S,由S=xy,即可求得Sx的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.

试题解析:解:(1)y=30﹣2x(6≤x<15).

(2)设矩形苗圃园的面积为SS=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.5)2+112.5,由(1)知,6≤x<15,∴x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图抛物线y=ax2+bx,过点A(4,0)和点B(6,2),四边形OCBA是平行四边形,点M(t,0)为x轴正半轴上的点,点N为射线AB上的点,且AN=OM,点D为抛物线的顶点.

(1)求抛物线的解析式,并直接写出点D的坐标;

(2)当△AMN的周长最小时,求t的值;

(3)如图②,过点MMEx轴,交抛物线y=ax2+bx于点E,连接EM,AE,当△AME与△DOC相似时.请直接写出所有符合条件的点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形的边轴上,,过点的双曲线,且,若的面积等于3,则的值等于(

A. 2B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了   人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为   

(2)将条形统计图补充完整.观察此图,支付方式的众数   ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,剪两张对边平行且宽度相等的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

A. ABC=ADC,BAD=BCD B. AB=BC

C. AB=CD,AD=BC D. DAB+BCD=180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l经过A(60)B(012)两点,且与直线yx交于点C,点P(m0)x轴上运动.

(1)求直线l的解析式;

(2)过点Pl的平行线交直线yx于点D,当m3时,求△PCD的面积;

(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(﹣20),B01),以线段AB为边在第二象限作矩形ABCD,双曲线yk0)过点D,连接BD,若四边形OADB的面积为6,则k的值是(

A.9B.12C.16D.18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,直线ly轴正半轴所夹的锐角为60°,过点A01)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1,以A1BBA为邻边作ABA1C1;过点A1y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1B1A1为邻边作A1B1A2C2;按此作法继续下去,则C3的坐标是 ____________Cn的坐标是 _____________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现:如图①,在△ABC中,∠BAC90°ABAC,点DBC的中点,以点D为顶点作正方形DFGE,使点AC分别在DEDF上,连接BEAF.则线段BEAF数量关系_____

(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.

(3)解决问题:若BCDF2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.

查看答案和解析>>

同步练习册答案