精英家教网 > 初中数学 > 题目详情
13.能够成为直角三角形边长的三个正整数,我们称之为一组勾股数,观察表格所给出的三个数a,b,c,a<b<c.
(1)试找出它们的共同点,并证明你的结论;
(2)写出当a=17时,b,c的值.
3,4,5  32+42=52
 5,12,13, 52+122=132
 7,24,25 72+242=252
 9,40,41 92+402=412
 17,b,c 172+b2=c2

分析 (1)根据表格找出规律再证明其成立;
(2)把已知数据代入经过证明成立的规律即可.

解答 解:(1)以上各组数的共同点可以从以下方面分析:
①以上各组数均满足a2+b2=c2
②最小的数(a)是奇数,其余的两个数是连续的正整数;
③最小奇数的平方等于另两个连续整数的和,
如32=9=4+5,52=25=12+13,72=49=24+25,92=81=40+41…
由以上特点我们可猜想并证明这样一个结论:
设m为大于1的奇数,将m2拆分为两个连续的整数之和,即m2=n+(n+1),
则m,n,n+1就构成一组简单的勾股数,
证明:∵m2=n+(n+1)(m为大于1的奇数),
∴m2+n2=2n+1+n2=(n+1)2
∴m,n,(n+1)是一组勾股数;
(2)运用以上结论,当a=17时,
∵172=289=144+145,
∴b=144,c=145.

点评 本题考查了勾股数、勾股定理的逆定理;解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.为了从甲、乙两名运动员中选拔一人参加市射击比赛,在选拔赛上每人打10发,其中甲的射击环数分别是10,8,7,9,8,10,10,9,10,9.
(1)计算甲射击成绩的方差;
(2)经过统计,乙射击的平均成绩是9,方差是1.4.你认为选谁去参加比赛更合适?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列计算正确的是(  )
A.$\sqrt{4+9}=\sqrt{4}+\sqrt{9}$B.2$\sqrt{2}-\sqrt{2}$=2C.$\sqrt{2}×\sqrt{3}=\sqrt{5}$D.$\frac{{\sqrt{21}}}{{\sqrt{3}}}=\sqrt{\frac{21}{3}}=\sqrt{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)$-\sqrt{7}÷3\sqrt{\frac{14}{15}}×\frac{3}{2}\sqrt{2\frac{1}{2}}$
(2)$2\sqrt{x{y^3}}÷({-\frac{1}{2}\sqrt{{x^3}{y^2}}})$
(3)$\sqrt{4\frac{4}{5}}•3\sqrt{5}÷(-\frac{3}{4}\sqrt{10})$
(4)$\sqrt{a{b^3}}÷({-3\sqrt{\frac{b}{2a}}})×({-3\sqrt{2a}})$
(5)$\sqrt{24}+\sqrt{\frac{2}{3}}-3\sqrt{6}$
(6)$\sqrt{30}×\frac{3}{2}\sqrt{2\frac{2}{3}}÷2\sqrt{2\frac{1}{2}}$
(7)${({\sqrt{5}-2})^2}+({\sqrt{5}-3})({\sqrt{5}+3})$
(8)$(\frac{1}{3}\sqrt{27}-\sqrt{24}-3\sqrt{\frac{2}{3}})•\sqrt{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若一次函数y=(m-3)x+5的函数值,y随x的增大而增大,则(  )
A.m<0B.m>0C.m<3D.m>3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.看图填空:已知,如图,BC∥EF,AD=BE,BC=EF.试说明△ABC≌△DEF
解:∵AD=BE
∴AD+DB=BE+DB;  即:AB=DE
∵BC∥EF
∴∠ABC=∠E(两直线平行,同位角相等)
在△ABC和△DEF中,BC=EF,∠ABC=∠E,AB=DE,
∴△ABC≌△DEF (SAS).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,已知AE=CF,∠AFD=∠CEB,添加一个条件后,仍无法判定△ADF≌△CBE的是(  )
A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.若一个角的补角的$\frac{1}{3}$比这个角的余角大20°,求这个角.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.直线l1:y=x+1与直线l2:y=mx+n的交点P的横坐标为1,则下列说法错误的是(  )
A.点P的坐标为(1,2)
B.关于x、y的方程组$\left\{\begin{array}{l}{y=x+1}\\{y=mx+n}\end{array}\right.$的解为$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$
C.直线l1中,y随x的增大而减小
D.直线y=nx+m也经过点P

查看答案和解析>>

同步练习册答案