【题目】如图,直线与x轴交于点A(3,0),与y轴交于点B,抛物线经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
①试用含m的代数式表示PN的长;
②m为何值时△ABN面积最大,并求△ABN的最大值.
【答案】(1)B(0,2);;(2)①;②时,△ABN面积最大,△ABN面积最大值为.
【解析】
(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)①M(m,0),则P(m,),N(m,),即可求出PN的长;
②先得到S与m的关系式,根据二次函数的性质可得面积的最大值.
解:(1)直线与x轴交于点A(3,0),
∴,解得:c=2;
∴B(0,2),
∵抛物线经过点A(3,0)和点B(0,2),
∴,
∴,
∴抛物线的解析式为:;
(2)①∵MN⊥x轴,M(m,0),
∴N(m,),P(m,-),
∴;
②根据题意,有
∴时,△ABN面积最大,△ABN面积最大值为.
科目:初中数学 来源: 题型:
【题目】如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D.
(1)在图(1)中,用直尺和圆规过点D作⊙O的切线DE交BC于点E;(保留作图痕迹,不写作法)
(2)如图(2),如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+1与反比例函数y=的图象相交于点A、B,过点A作AC⊥x轴,垂足为点C(﹣2,0),连接AC、BC.
(1)求反比例函数的解析式;
(2)求S△ABC;
(3)利用函数图象直接写出关于x的不等式﹣x+1<的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2-2mx+m2+3(m是常数).
(1)求证:不论m为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn.
(1)请用列表或画树状图的方法表示取出数字的所有结果;
(2)求正比例函数y=kx的图象经过第一、三象限的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.
(1)求证:AB=CE;
(2)若,则四边形ABEC是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数图象的顶点坐标为M(1,0),直线y=x+m与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在y轴上.P(a,0)是x轴上的一个动点,过P作x轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
(1)求m的值及这个二次函数的解析式;
(2)若点P的横坐标为2,求△ODE的面积;
(3)当0<a<3时,求线段DE的最大值;
(4)若直线AB与抛物线的对称轴交点为N,问是否存在一点P,使以M、N、D、E为顶点的四边形是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:
(1)在第n个图中,第一横行共 块瓷砖,第一竖列共有 块瓷砖;(均用含n的代数式表示)铺设地面所用瓷砖的总块数为 (用含n的代数式表示,n表示第n个图形)
(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;
(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com