精英家教网 > 初中数学 > 题目详情

如图,把图①中的△ABC经过一定的变换得到图②中的,如果图①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点的坐标为

[  ]

A.(a-2,b-3)

B.(a-3,b-2)

C.(a+3,b+2)

D.(a+2,b+3)

答案:C
解析:

在平面直角坐标系内点的平移与坐标的变化规律,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b);


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,把图中的⊙A经过平移得到⊙O(如左图),如果左图中⊙A上一点P的坐标为(m,n),那么平移后在右图中的对应点P’的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

38、如图1中的△ABC是直角三角形,∠C=90°.现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合条件的矩形可以画出两个,如图2所示:

(1)设图2中的矩形ACBD和矩形AEFB的面积分别为S1和S2,则S1
=
S2(填“>”,“=”,“<”)
(2)如图3中的△ABC是锐角三角形,且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么
符合要求的矩形可以画出
3
个,并在图3中把符合要求的矩形画出来.
(3)在图3中所画出的矩形中,它们的面积之间具有怎样的关系?并说明你的理由;
(4)猜想图3中所画的矩形的周长之间的大小关系,不必证明.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(山东青岛卷)数学(带解析) 题型:解答题

问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶
点,可把原n边形分割成多少个互不重叠的小三角形?
问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:
探究一:以△ABC的3个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互
不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.
探究二:以△ABC的3个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个
互不重叠的小三角形?
在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种
情况:
一种情况,点Q在图①分割成的某个小三角形内部.不妨设点Q在△PAC的内部,如图②;
另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨设点Q在PA上,如图③.
显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.
探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点,可把△ABC分割成     
互不重叠的小三角形,并在图④中画出一种分割示意图.
探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个点为顶点,可把△ABC分割成       
互不重叠的小三角形.
探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个点为顶点,可把四边形分割成
       个互不重叠的小三角形.
问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成
       个互不重叠的小三角形.
实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互
不重叠的小三角形?(要求列式计算)

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

如图1中的△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合条件的矩形可以画出两个,如图2所示。
(1)设图2中的矩形ACBD和矩形AEFB的面积分别为S1和S2,则S1____S2(填“>”,“=”或“<);
(2)如图3中的△ABC是锐角三角形,且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出____个,并在图3中把符合要求的矩形画出来;
(3)在图3中所画出的矩形中,它们的面积之间具有怎样的关系?并说明你的理由;
(4)猜想图3中所画的矩形的周长之间的大小关系,不必证明。

查看答案和解析>>

同步练习册答案