精英家教网 > 初中数学 > 题目详情
心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.
【答案】分析:(1)知道接受能力y与提出概念所用的时间x之间满足函数关系式,令x=10,求出y,
(2)求出x=8和15时,y的值,然后和x=10时,y的值比较.
解答:解:(1)当x=10时,y=-0.1x2+2.6x+43=-0.1×102+2.6×10+43=59.
(2)当x=8时,y=-0.1x2+2.6x+43=-0.1×82+2.6×8+43=57.4,
∴用8分钟与用10分钟相比,学生的接受能力减弱了;
当x=15时,y=-0.1x2+2.6x+43=-0.1×152+2.6×15+43=59.5.
∴用15分钟与用10分钟相比,学生的接受能力增强了.
点评:本题主要考查二次函数的应用,本题知道函数解析式,直接求y值,用二次函数解决实际问题,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.

查看答案和解析>>

科目:初中数学 来源:《第2章 二次函数》2010年单元测试卷(解析版) 题型:解答题

心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.

查看答案和解析>>

科目:初中数学 来源:《第2章 二次函数》2010年单元测试2(解析版) 题型:解答题

心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年浙江省丽水市庆元县庆元新中九年级(上)第一、二章月考卷(1)(解析版) 题型:解答题

心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.
(1)若用10分钟提出概念,学生的接受能力y的值是多少?
(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.

查看答案和解析>>

同步练习册答案