精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,是角平分线,

1)求的度数.

2)过点边上的高 垂足为;求的度数.

【答案】1)∠BAD=35°;(2)∠EAD=15°

【解析】

1)根据三角形内角和定理求出∠BAC的度数,根据角平分线得定义即可求出∠BAD的度数;

2)由直角三角形两锐角互余的关系可求出∠CAE的度数,根据角平分线的定义可求出∠CAD的度数,根据角的和差关系即可求出∠EAD的度数.

1)∵∠B=40°,∠C=70°,∠BAC+B+C=180°

∴∠BAC=180°-B-C=70°

是角平分线,

∴∠BAD=CAD=BAC=35°

2)∵AEBC边上的高,

∴∠AEC=90°

∵∠C=70°

∴∠CAE=90°-C=20°

∵∠CAD=35°

∴∠EAD=CAD-CAE=15°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】y= x+1是关于x的一次函数,则一元二次方程kx2+2x+1=0的根的情况为( )
A.没有实数根
B.有一个实数根
C.有两个不相等的实数根
D.有两个相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.

使用次数

0

1

2

3

4

5

人数

11

15

23

28

18

5

(1)这天部分出行学生使用共享单车次数的中位数是   ,众数是   ,该中位数的意义是   

(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)

(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,直线ABCD,EAB、CD间的一点,连接EA、EC.


(1)如图①,若∠A=20°,C=40°,则∠AEC=   °.

(2)如图②,若∠A=x°,C=y°,则∠AEC=   °.

(3)如图③,若∠A=α,C=β,则α,β与∠AEC之间有何等量关系.并简要说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BDBC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOQ=( )

A.60°
B.65°
C.72°
D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.

(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知EF分别是ABCD上的动点,P也为一动点.

1)如图1,若ABCD,求证:∠P=∠BEP+∠PFD

2)如图2,若∠P=∠PFD-∠BEP,求证:ABCD

3)如图3ABCD,移动EF使得∠EPF90°,作∠PEG=∠BEP,求的值.

查看答案和解析>>

同步练习册答案