精英家教网 > 初中数学 > 题目详情

如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).

(1)求抛物线的解析式;

(2)设抛物线的顶点为D,求四边形AEDB的面积;

(3)△AOB与△DBE是否相似?如果相似,请给出证明;如果不相似,请说明理由.

答案:
解析:

  解:(1)因为抛物线与y轴交于点(0,3),

  所以设抛物线的解析式为y=ax2+bx+3(a≠0).

  根据题意,得a-b+3=0,9a+3b+3=0,

  解得a=-1,b=2.

  所以抛物线的解析式为y=-x2+2x+3.

  (2)由顶点坐标公式得顶点坐标为D(1,4),

  设对称轴与x轴的交点为F,

  所以四边形ABDE的面积=S△AOB+S梯形BOFD+S△DFE=AO·BO+(BO+DF)·OF+EF·DF=×1×3+×(3+4)×1+×2×4=9.

  (3)相似.

  如图,过点B作BG⊥DF,垂足为G.

  BD=

  BE==3

  DE==2

  所以BD2+BE2=20,DE2=20.

  即BD2+BE2=DE2

  所以△BDE是直角三角形.

  所以∠AOB=∠DBE=90°,

  且

  所以△AOB∽△DBE.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)点M是直线CD上的一动点,BM交抛物线于N,是否存在点N是线段BM的中点,如果存在,求出点N的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),且对称轴方程为x=1
(1)求抛物线与x轴的另一个交点B的坐标;
(2)求抛物线的解析式;
(3)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(4)若点M是抛物线上一点,以B、C、D、M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-1,0),E(3,0),与y轴交于点B,且该精英家教网函数的最大值是4.
(1)抛物线的顶点坐标是(
 
 
);
(2)求该抛物线的解析式和B点的坐标;
(3)设抛物线顶点是D,求四边形AEDB的面积;
(4)若抛物线y=mx2+nx+p与上图中的抛物线关于x轴对称,请直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,在坐标平面内找一点G,使以点G、F、C为顶点的三角形与△COE相似,请直接写出符合要求的,并在第一象限的点G的坐标;
(3)将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?

查看答案和解析>>

同步练习册答案