【题目】如图,某一时刻太阳光从教室窗户射入室内,与地面的夹角为,窗户的一部分在教室地面所形成的影长为米,窗户的高度为米.求窗外遮阳蓬外端一点到教室窗户上椽的距离.(参考数据:,结果精确米)
【答案】窗外遮阳蓬外端一点到教室窗户上椽的距离为.
【解析】
如下图,过E作EG∥AC交BP于G,根据平行线的性质,可得在Rt△PEG中,∠P=30°;已知PE=3.5m.根据三角函数的定义,解三角形可得EG的长,进而在Rt△BAD中,可得tan30°=,解可得AD的值.
过E作EG∥AC交BP于G,
∵EF∥DP,
∴四边形BFEG是平行四边形。
在Rt△PEG中,PE=3.5m,∠P=30,
tan∠EPG=,
∴EG=EPtan∠P=3.5×tan30≈2.02(m).
又∵四边形BFEG是平行四边形,
∴BF=EG=2.02m,
∴AB=AFBF=2.52.02=0.48(m).
又∵AD∥PE,∠BDA=∠P=30,
在Rt△BAD中,tan30=,
∴AD= =0.48×≈0.8(米).
答:窗外遮阳蓬外端一点D到教室窗户上椽的距离AD为0.8m.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是⊙O上一点,连接AC.过点B作⊙O的切线,交AC的延长线于点D,在AD上取一点E,使AE=AB,连接BE,交⊙O于点F.
请补全图形并解决下面的问题:
(1)求证:∠BAE=2∠EBD;
(2)如果AB=5,sin∠EBD=.求BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC和△DEF满足下列条件,其中能使△ABC与△DEF相似的是( )
A. AB=c,AC=b,BC=a,DE=,EF=,DF=
B. AB=1,AC=1.5,BC=2,DE=12,EF=8,DF=1
C. AB=3,AC=4,BC=6,DE=12,EF=8,DF=6
D. AB=,AC=,BC=,DE=,EF=3,DF=3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方是长方形的仿古通道.
(1)现有一辆卡车装满家具后,高为3.6米,宽为3.2米,请问这辆送家具的卡车能通过这个通道吗?为什么?
(2)如图2,若通道正中间有一个0.4米宽的隔离带,问一辆宽1.5米高3.8米的车能通过这个通道吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(发现)
如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①).
如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?请证明点D也不在⊙O内.
(应用)
利用(发现)和(思考)中的结论解决问题:
(1)如图④,已知∠BCD=∠BAD,∠CAD=40°,求∠CBD的度数.
(2)如图⑤,若四边形ABCD中,∠CAD=90°,作∠CDF=90°,交CA延长线于F,点E在AB上,∠AED=∠ADF,CD=3,EC=2,求ED的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为的正方形中,点为边上的一个动点(与点、不重合),,交对角线于点,交对角线于点,交于点.
如图,联结,求证:,并写出的值;
联结,如图,若设,,求关于的函数解析式,并写出函数的定义域;
当为边的三等分点时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.
(1)初三(1)班接受调查的同学共有多少名;
(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;
(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与直线均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x<2时,y2>y1;②y2随x的增大而增大的取值范围是x<2;③使得y2大于4的x值不存在; ④若y2=2,则x=2﹣或x=1.
其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明为了检验两枚六个面分别刻有点数1、 2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 00 0次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com