精英家教网 > 初中数学 > 题目详情

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:

(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;

(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABCP1P2三等分边ABR1R2三等分边AC.

经探究知SABC,请证明.

问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1Q2三等分边DC.请探究S四边形ABCD之间的数量关系.

问题3:如图3,P1P2P3P4五等分边ABQ1Q2Q3Q4五等分边DC.S四边形ABCD=1,求

问题4:如图4,P1P2P3四等分边ABQ1Q2Q3四等分边DCP1Q1P2Q2P3Q3将四边形ABCD分成四个部分,面积分别为S1S2S3S4.请直接写出含有S1S2S3S4的一个等式.

答案:
解析:

  解:问题1:∵P1P2三等分边ABR1R2三等分边AC

  ∴P1R1P2R2BC.∴△AP1R1∽△AP2R2∽△ABC,且面积比为1∶4∶9.

  ∴SABCSABC

  问题2:连接Q1R1Q2R2,如图,由问题1的结论,可知

  ∴SABCSACD

  ∴S四边形ABCD

  由∵P1P2三等分边ABR1R2三等分边ACQ1Q2三等分边DC

  可得P1R1P2R2Q2R2Q1R1=1:2,且P1R1P2R2Q2R2Q1R1

  ∴∠P1R1A=∠P2R2A,∠Q1R1A=∠Q2R2A.∴∠P1R1Q1=∠P2R2Q2

  由结论(2),可知

  ∴S四边形ABCD

  问题3:设=A,=B,设=C,

  由问题2的结论,可知A=,B=

  A+B=(S四边形ABCD+C)=(1+C).

  又∵C=(A+B+C),即C=[(1+C)+C].

  整理得C=,即

  问题4:S1S4S2S3

  分析:问题1:由平行和相似三角形的判定,再由相似三角形面积比是对应边的比的平方的性质可得.

  问题2:由问题1的结果和所给结论(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比,可得.

  问题3:由问题2的结果经过等量代换可求.

  问题4:由问题2可知S1S4S2S3SABCD


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)
精英家教网
问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知S四边形P1P2R2R1=
13
S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究S四边形P1Q1Q2P2与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求S四边形P2Q2Q3P3
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:

(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;

(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

  问题1:如图1,现有一块三角形纸板ABCP1P2三等分边ABR1R2三等分边AC

经探究知SABC,请证明.

  

    问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1Q2三等分边DC.请探究S四边形ABCD之间的数量关系.

    问题3:如图3,P1P2P3P4五等分边ABQ1Q2Q3Q4五等分边DC.若

S四边形ABCD=1,求

 问题4:如图4,P1P2P3四等分边ABQ1Q2Q3四等分边DCP1Q1P2Q2P3Q3

将四边形ABCD分成四个部分,面积分别为S1S2S3S4.请直接写出含有S1S2S3S4的一个等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:

(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;

(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABCP1P2三等分边ABR1R2三等分边AC

经探究知SABC,请证明.

 

  问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1Q2三等分边DC.请探究S四边形ABCD之间的数量关系.

  问题3:如图3,P1P2P3P4五等分边ABQ1Q2Q3Q4五等分边DC.若

S四边形ABCD=1,求

问题4:如图4,P1P2P3四等分边ABQ1Q2Q3四等分边DCP1Q1P2Q2P3Q3

将四边形ABCD分成四个部分,面积分别为S1S2S3S4.请直接写出含有S1S2S3S4的一个等式.

查看答案和解析>>

科目:初中数学 来源:2012年陕西省渭南市富平县九年级摸底考试数学试卷(解析版) 题型:解答题

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知=S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省苏州市中考数学模拟试卷(一)(解析版) 题型:解答题

某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:
(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;
(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;

现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.经探究知=S△ABC,请证明.
问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究与S四边形ABCD之间的数量关系.
问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若S四边形ABCD=1,求
问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.

查看答案和解析>>

同步练习册答案