精英家教网 > 初中数学 > 题目详情
如图,双曲线y=
k
x
(k>0)经过矩形OABC的边BC的中点E,交AB于点D,若梯形ODBC的面积为3,则双曲线的解析式为______.
连接OE,
设此反比例函数的解析式为y=
k
x
(k≠0),C(c,0),
则B(c,b),E(c,
b
2
),
设D(x,y),
∵D和E都在反比例函数图象上,
∴xy=k,
bc
2
=k,
即S△AOD=S△OEC=
1
2
×c×
b
2

∵梯形ODBC的面积为3,
∴bc-
1
2
×c×
b
2
=3,
3
4
bc=3,
∴bc=4,
∴S△AOD=S△OEC=1,
∵k>0,
1
2
k=1,解得k=2,
∴函数解析式为:y=
2
x

故答案为:y=
2
x

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

若反比例函数的图象经过点P(-1,4),则它的函数关系式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,直线y=
3
2
x+3
与x轴、y轴分别相交于A、B两点,与双曲线y=
k
x
在第一象限内交于点C,且S△AOC=6.
(1)求反比例函数的解析式;
(2)点D(4,a)为此双曲线在第一象限上的一点,点P为x轴上一动点,试确定点P的坐标,使得PC+PD的值最小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-x-1与反比例函数y=
m
x
交于第二象限点A.一次函数y=-x-1与坐标轴分别交于B、C两点,连接AO,若tan∠AOB=
1
3

(1)求反比例函数的解析式;
(2)求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知四边形AOBE和四边形CBFD均为正方形,反比例函数y=
4
x
的图象经过D、E两点,则点E的坐标是______;点D的坐标是______;△DOE的面积为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

当k<0时,函数y=k(x-1)与y=
k
x
在同一直角坐标系内的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

反比例函数y=
2m+3
x
,当x>0时,y随x的增大而增大,那么m的取值范围是(  )
A.m>-
3
2
B.m<-
3
2
C.m>
3
2
D.m<
3
2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点A(m,m+1),B(m+3,m-1)都在反比例函数y=
k
x
的图象上.
(1)求m、k的值:
(2)若M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形为平行四边形,则这样的四边形有______个.请直接写出此时平行四边形的四个顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形OABC是面积为4的正方形,函数y=
k
x
(x>0)的图象经过点B.
(1)k=______;
(2)如图2,将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′和正方形MA′BC.设线段MC′、NA′分别与函数y=
k
x
(x>0)的图象交于点E、F,则点E、F的坐标分别为:E(______,______),F(______,______);
(3)如图3,面积为4的正方形ABCD的顶点A、B分别在y轴、x轴上,顶点C、D在反比例函数y=
k
x
(x>0)的图象上,试求OA、OB的长.(请写出必要的解题过程)

查看答案和解析>>

同步练习册答案