精英家教网 > 初中数学 > 题目详情
如图,已知二次函数y=
1
2
x2+bx+c的图象与x轴只有一个公共点M,与y轴的交点为A,过点A的直线y=x+c与x轴交于点N,与这个二次函数的图象交于点B.
(1)求点A、B的坐标(用含b、c的式子表示);
(2)当S△BMN=4S△AMN时,求二次函数的解析式;
(3)在(2)的条件下,设点P为x轴上的一个动点,那么是否存在这样的点P,使得以P、A、M为顶点的三角形为等腰三角形?若存在,请写出符合条件的所有点P的坐标;若不存在,请说明理由.
(1)
y=
1
2
x2+bx+c(1)
y=x+c(2)

x1=0,x2=2-2b
当x1=0时,y1=c即A(0,c)
当x2=2-2b时,y2=2-2b+c
即B(2-2b,2-2b+c);

(2)2-2b-3c=0,△=0
得b2-2c=0,
联立③,④得
(6+2)(36-2)=0
∴b1=-2,b2=
2
3

-
b
2a
>0,而a=
1
2
>0.
∴b<0.
∴b=-2
当b=-2时,代入④得c=2
∴所求二次函数的解析式为:y=
1
2
x2-2x+2;

(3)存在符合条件的点P
Pl(2+2
2
,0),P2(0,0),P3(2-2
2
,0),P4(-2,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=
5

(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=2x2+4|x|-1的最小值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将长为156cm的铁线剪成两段,每段都围成一个边长为整数(cm)的正方形,求这两个正方形面积和的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知函数y=|8-2x-x2|和y=kx+k(k为常数),则不论k为何值,这两个函数的图象(  )
A.有且只有一个交点B.有且只有二个交点
C.有且只有三个交点D.有且只有四个交点

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y与x之间的二次函数关系式;
(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(4)请把(2)中所求出的二次函数配方成y=a(x+
b
2a
2+
4ac-b2
4a
的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A,B,C,P的坐标分别为(0,2),(3,2),(2,3),(1,1).
(1)请在图中画出△A′B′C′,使得△A′B′C′与△ABC关于点P成中心对称;
(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=
2
3
x2
的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2009在y轴的正半轴上,B1,B2,B3,…,B2009在二次函数y=
2
3
x2
第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2008B2009A2009都为等边三角形,计算出△A2008B2009A2009的边长为______.

查看答案和解析>>

同步练习册答案