精英家教网 > 初中数学 > 题目详情

【题目】已知一次函数y=kx+7的图像经过点A(2,3)

(1)求k的值;

(2)判断点B(-1,8),C(3,1)是否在这个函数的图像上,并说明理由;

(3)当-3<x<-1时,求y的取值范围

【答案】(1)k=-2(2)点B不在,点C在,(3)9<y<13

【解析】

试题分析:(1)把点A(2,3)代入y=kx+7即可求出k的值;(2)点B(-1,8),C(3,1)的横坐标代入函数解析式验证即可;(3)根据x的取值范围,即可求出y的取值范围

试题解析:(1)把点A(2,3)代入y=kx+7得:k=-2

(2)当x=-1时,y=-2×(-1)+7=9

98点B不在抛物线上

当x=3时,y=-2×3+7=1

点C在抛物线上

(3)当x=-3时,y=13,当x=-,1时,y=9,所以9<y<13

考点:一次函数

型】解答
束】
24

【题目】顺丰快递公司派甲、乙两车从A地将一批物品匀速运往B地,甲出发0.5h后乙开始出发,结果比甲早1h)到达B地,如图,线段OPMN分别表示甲、乙两车离A地的距离Skm)与时间th)的关系,a表示AB两地之间的距离.请结合图中的信息解决如下问题:

1)分别计算甲、乙两车的速度及a的值;

2)乙车到达B地后以原速立即返回,请问甲车到达B地后以多大的速度立即匀速返回,才能与乙车同时回到A地?并在图中画出甲、乙两车在返回过程中离A地的距离Skm)与时间th)的函数图象.

【答案】1甲、乙两车的速度分别为40km/h60km/ha的值是180km;(2)甲返回时的速度为90km/h

【解析】试题分析:(1)观察t轴,s轴表示的意义,利用v=求速度.(2) ,利用v=为等量列方程求解.

试题解析:

1)由图象得:甲的速度为:60÷1.5=40km/h),

乙的速度为:60÷1.5﹣0.5=60km/h),

a的方法如下:

方法1:由题意得: 10.5,解得:a=180

方法2:设甲到达B地的时间为t时,则乙所用的时间为(t﹣1﹣0.5)时,

由题意得:40t=60t﹣1﹣0.5),

t=4.5

a=40t=40×4.5=180

答:甲、乙两车的速度分别为40km/h60km/ha的值是180km.

2)方法1:设甲返回时的速度为xkm/h

,

解得:x=90

经检验:x=90是原方程的解,用符合题意,

所以,甲返回时的速度为90km/h

方法2:甲、乙同时返回A地,则甲返回时所用的时间为: -1=2

所以,甲返回时的速度为:180÷2=90km/h).

图象如图所示:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC,以AB为直径的⊙O分别与BCAC交于点DE,过点D作⊙O的切线DF,交AC于点F

1)求证:DFAC

2)若⊙O的半径为4CDF22.5°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形①、②在直线上正方形③如图放置若正方形①、②的面积分别为81 cm2144 cm2则正方形③的边长为(  )

A. 225 cm B. 63 cm C. 50 cm D. 15 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,对角线AC,BD相交于O点,点P是线段AD上一动点(不与点D重合),PO的延长线交BCQ点.

1)求证:四边形PBQD为平行四边形.

2)若AB=3cmAD=4cmP从点A出发.以1cm/s的速度向点D匀速运动.设点P的运动时间为ts,问:四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明准备进行如下操作试验把一根长40 cm的铁丝剪成两段并把每段首尾相连各围成一个正方形

(1)要使这两个正方形的面积之和等于58 cm2李明应该怎么剪这根铁丝?

(2)李明认为这两个正方形的面积之和不可能等于48 cm2你认为他的说法正确吗?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在做作业时,遇到这样一道几何题:

已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:CMD的度数.

小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:

请问小坚的提示中   ,④   

理由是:   

理由是:   

CMD的度数是   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程(组):

1 (2)

3 4

5 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.

(1)通过计算,判断AD2ACCD的大小关系;

(2)求∠ABD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒,当t为时,△ACP是等腰三角形.

查看答案和解析>>

同步练习册答案